首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   22篇
  2022年   2篇
  2018年   3篇
  2016年   3篇
  2015年   8篇
  2014年   7篇
  2013年   5篇
  2012年   8篇
  2011年   10篇
  2010年   4篇
  2009年   6篇
  2008年   13篇
  2007年   13篇
  2006年   7篇
  2005年   16篇
  2004年   8篇
  2003年   11篇
  2002年   12篇
  2001年   11篇
  2000年   14篇
  1999年   9篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1993年   3篇
  1992年   9篇
  1991年   12篇
  1990年   11篇
  1989年   8篇
  1988年   8篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1983年   5篇
  1982年   3篇
  1981年   7篇
  1980年   1篇
  1978年   5篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
排序方式: 共有267条查询结果,搜索用时 15 毫秒
61.
62.
We have previously reported that treatment with a streptococcal preparation (OK-432), one of the biologic response modifiers, inhibits insulitis and development of autoimmune diabetes in nonobese diabetic (NOD) mice and Bio-Breeding rats used as animal models of insulin-dependent diabetes mellitus (IDDM). We studied the mechanism by which OK-432 inhibited development of IDDM in NOD mice. In female NOD mice diabetes spontaneously developed from 10 to 15 wk of age and the cumulative incidence of diabetes amounted to 74.7% at 30 wk of age. NOD mice, however, never developed diabetes over the observation period of up to 45 wk of age when they were i.p. injected with 0.1 mg of OK-432 weekly from 4 to 15 wk of age. OK-432 treatment in younger age had a stronger inhibitory effect on the development of diabetes. Diabetes was transferred to young, irradiated mice by spleen cells of nontreated, adult mice, but barely transferred by those of OK-432-treated mice. Furthermore, these spleen cells of OK-432-treated mice did not suppress transfer of diabetes by diabetic mice spleen cells. Treatment with cyclophosphamide promoted development of diabetes in nontreated NOD mice due to removal of suppressor cells. However, cyclophosphamide did not show the promotive effect in OK-432-treated mice. Taken together, these results indicate that OK-432 treatment prevented development of diabetes mainly by suppression in generation of the effector cells for pancreatic B cell destruction. The same OK-432 treatment did not suppress the immune response to exogenous AG such as xenogeneic SRBC and allogeneic tumor cells. The study suggests that BRM in the natural environment such as streptococci may suppress induction and progression of autoimmunity and be useful for the immunotherapy of human IDDM.  相似文献   
63.
M Shima  Y Seino  S Torikai  M Imai 《Life sciences》1988,43(4):357-363
Using isolated glomeruli and nephron segments obtained from collagenase treated rabbit kidneys, we examined the in vitro degradation of alpha-human atrial natriuretic polypeptide (alpha-hANP). The ANP-degrading activity was measured by the amount of immunoreactive ANP remaining after incubation of about 50 fmoles alpha-hANP with each tissue preparation for 7.5 min. The sequence of degrading activity among isolated nephron segments was as follows: proximal straight tubule greater than proximal convoluted tubule greater than cortical collecting tubule greater than distal convoluted tubule greater than cortical thick ascending limb. A single glomerulus exhibited the degrading activity which was comparable to approximately 50% of the activity of 1 mm proximal convoluted tubule. Phosphoramidon, an inhibitor of endopeptidase, prevented the degradation of ANP in proximal convoluted tubule and glomerulus by 68% and 89%, respectively, but not in cortical thick ascending limb and cortical collecting tubule. From these results, we conclude that the degradation of ANP by endopeptidase occurs mainly in the proximal tubule and glomerulus.  相似文献   
64.
Complementary DNAs encoding the mouse GLUT3/brain facilitative glucose transporter have been isolated and sequenced. The predicted amino acid sequence indicates that mouse GLUT3 is composed of 493 amino acids and has 83 and 89% identity and similarity, respectively, to the sequence of human GLUT3. In contrast to human GLUT3 mRNA, which can be readily detected by RNA blotting in all human tissues that have been examined, mouse GLUT3 mRNA was only present at significant levels in brain. In situ hybridization showed differential expression of GLUT3 mRNA in several regions of adult mouse brain. Specific expression was observed in the hippocampus, with GLUT3 mRNA levels being higher in areas CA1 to CA3 than in the dentate gyrus. It was also detected in the Purkinje cell layer of the cerebellum and in the cerebral cortex, with higher expression in the piriform cortex than in other regions of the cortex. Antisera to mouse GLUT3 immunoblotted a series of proteins of 45-50 kDa in mouse brain plasma membranes. These results are consistent with GLUT3 being a neuronal glucose transporter.  相似文献   
65.
In order to investigate the regulation of glucose transporter gene expression in the altered metabolic conditions of obesity and diabetes, we have measured mRNA levels encoding GLUT2 in the liver and GLUT4 in the gastrocnemius muscle from various insulin resistant animal models, including Zucker fatty, Wistar fatty, and streptozocin(STZ)-treated diabetic rats. Northern blot analysis revealed that GLUT2 mRNA levels were significantly (P less than 0.001) elevated in 14 wk Zucker fatty and Wistar fatty rats relative to lean littermates but were similar in these two groups at 5 wk of age. Furthermore, there was significant increase (P less than 0.01) in GLUT2 mRNA levels in STZ diabetic rats at 3 wk after treatment. GLUT4 mRNA levels were not significantly different between control and insulin resistant rats in all animal models. These results indicate that neither hyperinsulinemia nor hyperglycemia affects GLUT4 mRNA levels in the muscle. However, GLUT2 mRNA levels in the liver were elevated in obesity and diabetes, although this regulatory event occurred independently from circulating insulin or glucose concentrations.  相似文献   
66.
A cDNA encoding a ubiquitin-conjugating enzyme designated UbcP4 in fission yeast was isolated. Disruption of its genomic gene revealed that it was essential for cell viability. In vivo depletion of the UbcP4 protein demonstrated that it was necessary for cell cycle progression at two phases, G2/M and metaphase/anaphase transitions. The G2 arrest of UbcP4-depleted cells was dependent upon chk1, which mediates checkpoint pathway. UbcP4-depleted cells arrested at metaphase had condensed chromosomes but were defective in separation. However, septum formation and cytokinesis were not restrained during the metaphase arrest. Overexpression of UbcP4 specifically rescued the growth defect of cut9ts cells at a restrictive temperature. cut9 encodes a component of the anaphase-promoting complex (APC) which is required for chromosome segregation at anaphase and moreover is defined as cyclin-specific ubiquitin ligase. Cdc13, a mitotic cyclin in fission yeast, was accumulated in the UbcP4-depleted cells. These results strongly suggested that UbcP4 is a ubiquitin-conjugating enzyme working in conjunction with APC and mediates the ubiquitin pathway for degradation of "sister chromatid holding protein(s)" at the onset of anaphase and possibly of mitotic cyclin at the exit of mitosis.  相似文献   
67.
68.
The effects of naloxone, an opiate antagonist, on basal and vagus nerve-induced secretions of GRP, gastrin, and somatostatin were examined using the isolated perfused rat stomach prepared with vagal innervation. Naloxone (10(-6) M) significantly inhibited basal somatostatin secretion in the presence and absence of atropine and of hexamethonium, whereas basal GRP and gastrin secretion was not affected by naloxone. Electrical stimulation (10 Hz, lms duration, 10V) of the distal end of the subdiaphragmatic vagal trunks elicited a significant increase in both GRP and gastrin but a decrease in somatostatin. Naloxone (10(-6) M) failed to affect these responses in the presence or absence of atropine. On the other hand, when hexamethonium was infused, naloxone significantly inhibited both the GRP and gastrin responses to electrical vagal stimulation. Somatostatin secretion was unchanged by vagal stimulation during the infusion of hexamethonium with or without naloxone. These findings suggest that basal somatostatin secretion is under the control of an opiate neuron and that opioid peptides might be involved in vagal regulation of GRP and gastrin secretion.  相似文献   
69.
Serum amyloid A (SAA)-induced remodeling of CSF-HDL   总被引:2,自引:0,他引:2  
Inflammation is a risk factor for Alzheimer's disease. Serum amyloid A (SAA) is an acute phase protein that dissociates apolipoprotein AI (apoAI) from plasma HDL. In cerebrospinal fluid (CSF), the SAA concentration is much higher in subjects with Alzheimer's disease than in controls. CSF-HDL is rich in apoE, which plays an important role as a ligand for lipoprotein receptors in the central nervous system (CNS). To clarify whether SAA dissociates apoE from CSF-HDL, we added recombinant SAA to CSF and determined the apoE distribution in the CSF using native two-dimensional gel electrophoresis. We found that SAA dissociated apoE from CSF-HDL in a dose-dependent manner. This effect was more evident in apoE4 carriers than in apoE3 or apoE2 carriers. After a 24-h incubation at 37 degrees C, SAA continuously dissociated apoE from CSF-HDL. Amyloid beta (Abeta) fragments (1-42) were bound to large CSF-HDL but not to apoE dissociated by SAA. In conclusion, SAA dissociates apoE from CSF-HDL. We postulate that inflammation in the CNS may impair Abeta clearance due to the loss of apoE from CSF-HDL.  相似文献   
70.
Recent crystal structures of cysteine dioxygenase (CDO) suggest the presence of two posttranslational modifications adjacent to the catalytic iron center: a thioether cross-link between Cys93 and Tyr157 and extra electron density at Cys164 which was variously explained as cystine or cysteine sulfinic acid. Purification of recombinant rat CDO yields “mature” and “immature” forms with distinct electrophoretic mobilities. We have positively identified and characterized the two modifications in the products of three sequential proteolytic digestions using liquid chromatography coupled with tandem mass spectrometry. The cross-link is unique to the mature form and was identified in an ion of m/z 3,225.403, consistent with a Tyr-Cys cross-link of peptides Gly80-Phe94 with His155-Phe167. The cross-link is liable to cleavage by in-source decay and the resulting separate peptides were sequenced by collision-induced dissociation tandem mass spectrometry. Mass-spectrometric analysis of these same and overlapping peptides in the presence or absence of reductants and alkylating agents identified the second modification to be a cystine formed between Cys164 and exogenous cysteine as proposed earlier. Both modifications have been shown to form in the presence of high levels of cysteine and iron. This and the presence of small amounts of an apparently off-pathway cystine at position Cys93 suggest that although these conditions promote CDO maturation, they may actually arise via nonenzymatic, nonphysiological processes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号