首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   245篇
  免费   22篇
  267篇
  2022年   2篇
  2018年   3篇
  2016年   3篇
  2015年   8篇
  2014年   7篇
  2013年   5篇
  2012年   8篇
  2011年   10篇
  2010年   4篇
  2009年   6篇
  2008年   13篇
  2007年   13篇
  2006年   7篇
  2005年   16篇
  2004年   8篇
  2003年   11篇
  2002年   12篇
  2001年   11篇
  2000年   14篇
  1999年   9篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1993年   3篇
  1992年   9篇
  1991年   12篇
  1990年   11篇
  1989年   8篇
  1988年   8篇
  1987年   4篇
  1986年   4篇
  1985年   3篇
  1983年   5篇
  1982年   3篇
  1981年   7篇
  1980年   1篇
  1978年   5篇
  1977年   3篇
  1976年   1篇
  1975年   2篇
  1972年   1篇
排序方式: 共有267条查询结果,搜索用时 15 毫秒
31.
We examined effects of seasonality of climate and dominant life form (evergreen/deciduous, broad-leaf/coniferous) together with energy condition on species diversity, forest structure, forest dynamics, and productivity of forest ecosystems by comparing the patterns of changes in these ecosystem attributes along altitudinal gradients in tropical regions without seasonality and along a latitudinal gradient from tropical to temperate regions in humid East Asia. We used warmth index (temperature sum during growing season, WI) as an index of energy condition common to both altitudinal and latitudinal gradients. There were apparent differences in patterns of changes in the ecosystem attributes in relation to WI among four forest formations that were classified according to dominant life form and climatic zone (tropical/temperate). Many of the ecosystem attributes—Fishers alpha of species-diversity indices, maximum tree height and stem density, productivity [increment rate of aboveground biomass (AGB)], and population and biomass turnover rates—changed sharply with WI in tropical and temperate evergreen broad-leaved forests, but did not change linearly or changed only loosely with WI in temperate deciduous broad-leaved and evergreen coniferous forests. Values of these ecosystem attributes in temperate deciduous broad-leaved and evergreen coniferous forests were higher (stem density was lower) than those in tropical and temperate evergreen broad-leaved forests under colder conditions (WI below 100°C). Present results indicate that seasonality of climate and resultant change in dominant life form work to buffer the effects of energy reduction on ecosystem attributes along latitudinal gradients.  相似文献   
32.
We present the first structure of a glycoside hydrolase family 79 β-glucuronidase from Acidobacterium capsulatum, both as a product complex with β-D-glucuronic acid (GlcA) and as its trapped covalent 2-fluoroglucuronyl intermediate. This enzyme consists of a catalytic (β/α)(8)-barrel domain and a β-domain with irregular Greek key motifs that is of unknown function. The enzyme showed β-glucuronidase activity and trace levels of β-glucosidase and β-xylosidase activities. In conjunction with mutagenesis studies, these structures identify the catalytic residues as Glu(173) (acid base) and Glu(287) (nucleophile), consistent with the retaining mechanism demonstrated by (1)H NMR analysis. Glu(45), Tyr(243), Tyr(292)-Gly(294), and Tyr(334) form the catalytic pocket and provide substrate discrimination. Consistent with this, the Y292A mutation, which affects the interaction between the main chains of Gln(293) and Gly(294) and the GlcA carboxyl group, resulted in significant loss of β-glucuronidase activity while retaining the side activities at wild-type levels. Likewise, although the β-glucuronidase activity of the Y334F mutant is ~200-fold lower (k(cat)/K(m)) than that of the wild-type enzyme, the β-glucosidase activity is actually 3 times higher and the β-xylosidase activity is only 2.5-fold lower than the equivalent parameters for wild type, consistent with a role for Tyr(334) in recognition of the C6 position of GlcA. The involvement of Glu(45) in discriminating against binding of the O-methyl group at the C4 position of GlcA is revealed in the fact that the E45D mutant hydrolyzes PNP-β-GlcA approximately 300-fold slower (k(cat)/K(m)) than does the wild-type enzyme, whereas 4-O-methyl-GlcA-containing oligosaccharides are hydrolyzed only 7-fold slower.  相似文献   
33.
Ogata S  Miki T  Seino S  Tamai S  Kasai H  Nemoto T 《PloS one》2012,7(5):e37048
Noc2, a putative Rab effector, contributes to secretory-granule exocytosis in neuroendocrine and exocrine cells. Here, using two-photon excitation live-cell imaging, we investigated its role in Ca(2+)-dependent zymogen granule (ZG) exocytosis in pancreatic acinar cells from wild-type (WT) and Noc2-knockout (KO) mice. Imaging of a KO acinar cell revealed an expanded granular area, indicating ZG accumulation. In our spatiotemporal analysis of the ZG exocytosis induced by agonist (cholecystokinin or acetylcholine) stimulation, the location and rate of progress of ZG exocytosis did not differ significantly between the two strains. ZG exocytosis from KO acinar cells was seldom observed at physiological concentrations of agonists, but was normal (vs. WT) at high concentrations. Flash photolysis of a caged calcium compound confirmed the integrity of the fusion step of ZG exocytosis in KO acinar cells. The decreased ZG exocytosis present at physiological concentrations of agonists raised the possibility of impaired elicitation of calcium spikes. When calcium spikes were evoked in KO acinar cells by a high agonist concentration: (a) they always started at the apical portion and traveled to the basal portion, and (b) calcium oscillations over the 10 μM level were observed, as in WT acinar cells. At physiological concentrations of agonists, however, sufficient calcium spikes were not observed, suggesting an impaired [Ca(2+)](i)-increase mechanism in KO acinar cells. We propose that in pancreatic acinar cells, Noc2 is not indispensable for the membrane fusion of ZG per se, but instead performs a novel function favoring agonist-induced physiological [Ca(2+)](i) increases.  相似文献   
34.
35.
36.
37.
Achondroplasia (ACH), the most common form of short-limbed dwarfism, and its related disorders are caused by constitutively activated point-mutated fibroblast growth factor receptor 3 (FGFR3). Recent studies have provided a large body of evidence to prove chondrocyte proliferation and differentiation in these disorders. However, little is known about the possible effects of the FGFR3 mutants on apoptosis of chondrocytes. In the present study, we analyzed apoptosis using a chondrogenic cell line, ATDC5, expressing the FGFR3 mutants causing ACH and thanatophoric dysplasia, which is a more severe neonatal lethal form comprising type I and type II. We found that the introduction of these mutated FGFR3s into ATDC5 cells decreased mRNA expression of parathyroid hormone-related peptide (PTHrP) and induced apoptosis. Importantly, replacement of PTHrP prevented the apoptotic changes in ATDC5 cells expressing ACH mutant. Insulin-like growth factor (IGF)-I, which is an important mediator of growth hormone (GH), also reduced apoptosis in ATDC5 cells expressing ACH mutant. IGF-I prevented apoptosis through the phosphatidylinositol 3-kinase and mitogen-activated protein kinase pathways, indicating the mechanisms by which GH treatment improves disturbed bone growth in ACH.  相似文献   
38.
RCAI-17, 22, 24-26, 29, 31, 34-36, 38-40, and 88, the analogs of KRN7000 with a sulfonamide linkage instead of an amide bond, were synthesized to examine their bioactivity for mouse natural killer (NK) T cells. RCAI-17, 22, 24-26, 29, 31, 34-36, and 88 are the aromatic sulfonamide analogs, while RCAI-39 and 40 are the aliphatic ones. RCAI-38 is a C-galactoside analog of RCAI-26, which is the p-toluenesulfonamide analog of KRN7000. According to their bioassay, these sulfonamide analogs were shown to be the stimulants of mouse NKT cells to induce the production of Th2-biased cytokines in vitro, while RCAI-38 did not induce any cytokine production.  相似文献   
39.
40.
Recently developed heavy ion irradiation therapy using a carbon beam (CB) against systemic malignancy has numerous advantages. However, the clinical results of CB therapy against glioblastoma still have room for improvement. Therefore, we tried to clarify the molecular mechanism of CB-induced glioma cell death. T98G and U251 human glioblastoma cell lines were irradiated by CB, and caspase-dependent apoptosis was induced in both cell lines in a dose-dependent manner. Knockdown of Bax (BCL-2-associated X protein) and Bak (BCL-2-associated killer) and overexpression of Bcl-2 or Bcl-xl (B-cell lymphoma-extra large) showed the involvement of Bcl-2 family proteins upstream of caspase activation, including caspase-8, in CB-induced glioma cell death. We also detected the activation of extracellular signal-regulated kinase (ERK) and the knockdown of ERK regulator mitogen-activated protein kinase kinase (MEK)1/2 or overexpression of a dominant-negative (DN) ERK inhibited CB-induced glioma cell death upstream of the mitochondria. In addition, application of MEK-specific inhibitors for defined periods showed that the recovery of activation of ERK between 2 and 36 h after irradiation is essential for CB-induced glioma cell death. Furthermore, MEK inhibitors or overexpression of a DN ERK failed to significantly inhibit X-ray-induced T98G and U251 cell death. These results suggested that the MEK–ERK cascade has a crucial role in CB-induced glioma cell death, which is known to have a limited contribution to X-ray-induced glioma cell death.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号