首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   7篇
  2022年   2篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   8篇
  2014年   14篇
  2013年   10篇
  2012年   14篇
  2011年   23篇
  2010年   9篇
  2009年   11篇
  2008年   19篇
  2007年   11篇
  2006年   15篇
  2005年   19篇
  2004年   17篇
  2003年   12篇
  2002年   11篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   3篇
  1983年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有241条查询结果,搜索用时 31 毫秒
31.

Background

Macrophage migration inhibitory factor (MIF) is not only a cytokine which has a critical role in several inflammatory conditions but also has endocrine and enzymatic functions. MIF is identified as an intracellular signaling molecule and is implicated in the process of tumor progression, and also strongly enhances neovascularization. Overexpression of MIF has been observed in tumors from various organs. MIF is one of the genes induced by hypoxia in an hypoxia-inducible factor 1 (HIF-1)-dependent manner.

Methods/Principal Findings

The effect of MIF on HIF-1 activity was investigated in human breast cancer MCF-7 and MDA-MB-231 cells, and osteosarcoma Saos-2 cells. We demonstrate that intracellular overexpression or extracellular administration of MIF enhances activation of HIF-1 under hypoxic conditions in MCF-7 cells. Mutagenesis analysis of MIF and knockdown of 53 demonstrates that the activation is not dependent on redox activity of MIF but on wild-type p53. We also indicate that the MIF receptor CD74 is involved in HIF-1 activation by MIF at least when MIF is administrated extracellularly.

Conclusion/Significance

MIF regulates HIF-1 activity in a p53-dependent manner. In addition to MIF''s potent effects on the immune system, MIF is linked to fundamental processes conferring cell proliferation, cell survival, angiogenesis, and tumor invasiveness. This functional interdependence between MIF and HIF-1α protein stabilization and transactivation activity provide a molecular mechanism for promotion of tumorigenesis by MIF.  相似文献   
32.
S100A2 and S100A6 interact with several target proteins in a Ca2+-regulated manner. However, the exact intracellular roles of the S100 proteins are unclear. In this study we identified Hsp70/Hsp90-organizing protein (Hop) and kinesin light chain (KLC) as novel targets of S100A2 and S100A6. Hop directly associates with Hsp70 and Hsp90 through the tetratricopeptide (TPR) domains and regulates Hop-Hsp70 and Hop-Hsp90 complex formation. We have found that S100A2 and S100A6 bind to the TPR domain of Hop, resulting in inhibition of the Hop-Hsp70 and Hop-Hsp90 interactions in vitro. Although endogenous Hsp70 and Hsp90 interact with Hop in resting Cos-7 cells, but not with S100A6, stimulation of these cells with ionomycin caused a Hop-S100A6 interaction, resulting in the dissociation of Hsp70 and Hsp90 from Hop. Similarly, glutathione S-transferase pulldown and co-immunoprecipitation experiments revealed that S100A6 binds to the TPR domain of KLC, resulting in inhibition of the KLC-c-Jun N-terminal kinase (JNK)-interacting protein 1 (JIP-1) interaction in vitro. The transiently expressed JIP-1 interacts with KLC in resting Cos-7 cells but not with S100A6. Stimulation of these cells with ionomycin also caused a KLC-S100A6 interaction, resulting in dissociation of JIP-1 from KLC. These results strongly suggest that the S100 proteins modulate Hsp70-Hop-Hsp90 multichaperone complex formation and KLC-cargo interaction via Ca2+-dependent S100 protein-TPR protein complex formation in vivo as well as in vitro. Moreover, we have shown that S100A2 and S100A6 interact with another TPR protein Tom70 and regulate the Tom70-ligand interaction in vitro. Thus, our findings suggest a new intracellular Ca2+-signaling pathway via S100 proteins-TPR motif interactions.  相似文献   
33.
The genus Neoerysiphe belongs to the tribe Golovinomyceteae of the Erysiphaceae together with the genera Arthrocladiella and Golovinomyces. This is a relatively small genus, comprising only six species, and having ca 300 species from six plant families as hosts. To investigate the molecular phylogeny and evolution of the genus, we determined the nucleotide sequences of the rDNA ITS regions and the divergent domains D1 and D2 of the 28S rDNA. The 30 ITS sequences from Neoerysiphe are divided into three monophyletic groups that are represented by their host families. Groups 1 and 3 consist of N. galeopsidis from Lamiaceae and N. galii from Rubiaceae, respectively, and the genetic diversity within each group is extremely low. Group 2 is represented by N. cumminsiana from Asteraceae. This group also includes Oidium baccharidis, O. maquii, and Oidium spp. from Galinsoga (Asteraceae) and Aloysia (Verbenaceae), and is further divided into four subgroups. N. galeopsidis is distributed worldwide, but is especially common in western Eurasia from Central Asia to Europe. N. galii is also common in western Eurasia. In contrast, the specimens of group 2 were all collected in the New World, except for one specimen that was collected in Japan; this may indicate a close relationship of group 2 with the New World. Molecular clock calibration demonstrated that Neoerysiphe split from other genera of the Erysiphaceae ca 35–45 M years ago (Mya), and that the three groups of Neoerysiphe diverged between 10 and 15 Mya, in the Miocene. Aloysia citriodora is a new host for the Erysiphaceae and the fungus on this plant is described as O. aloysiae sp. nov.  相似文献   
34.
Fish scales-derived collagen peptides (CPs) are characterized by their specific amino acid composition with a high concentration of glycine, proline and hydroxyproline. These amino acids have been known to exert beneficial effects on human skin. The aim of the present study was to examine the effects of collagen peptides obtained from fish scales on changes in periorbital wrinkles, facial skin hydration, and skin elasticity in healthy women aged 30–60 years. In the present randomized, placebo-controlled, double-blind trial, 71 subjects consumed a 20 mL beverage containing 3000 mg of CPs or placebo once per day over 12 weeks. Significant decreases in periorbital wrinkles (p?<?0.05) were observed in the treatment group after 12 weeks of CPs ingestion compared to the control group. This study also demonstrated a consistent trend of enhanced facial skin moisture (p?<?0.001) and skin elasticity (p?<?0.001) by dietary intake of CPs without any side effects or adverse events. These findings indicate that fish-derived CPs hold great promise as a natural supplement with cutaneous anti-aging properties.  相似文献   
35.
In this report, we have focused our attention on identifying intracellular mammalian proteins that bind S100A12 in a Ca2+-dependent manner. Using S100A12 affinity chromatography, we have identified cytosolic NADP+-dependent isocitrate dehydrogenase (IDH), fructose-1,6-bisphosphate aldolase A (aldolase), glyceraldehyde-3-phosphate dehydrogenese (GAPDH), annexin V, S100A9, and S100A12 itself as S100A12-binding proteins. Immunoprecipitation experiments indicated the formation of stable complexes between S100A12 and IDH, aldolase, GAPDH, annexin V and S100A9 in vivo. Surface plasmon resonance analysis showed that the binding to S100A12, of S100A12, S100A9 and annexin V, was strictly Ca2+-dependent, whereas that of GAPDH and IDH was only weakly Ca2+-dependent. To localize the site of S100A12 interaction, we examined the binding of a series of C-terminal truncation mutants to the S100A12-immobilized sensor chip. The results indicated that the S100A12-binding site on S100A12 itself is located at the C-terminus (residues 87-92). However, cross-linking experiments with the truncation mutants indicated that residues 87-92 were not essential for S100A12 dimerization. Thus, the interaction between S100A12 and S100A9 or immobilized S100A12 should not be viewed as a typical S100 homo- or heterodimerization model. Ca2+-dependent affinity chromatography revealed that C-terminal residues 75-92 are not necessary for the interaction of S100A12 with IDH, aldolase, GAPDH and annexin V. To analyze the functional properties of S100A12, we studied its action in protein folding reactions in vitro. The thermal aggregation of IDH or GAPDH was facilitated by S100A12 in the absence of Ca2+, whereas in the presence of Ca2+ the protein suppressed the aggregation of aldolase to less than 50%. These results suggest that S100A12 may have a chaperone/antichaperone-like function which is Ca2+-dependent.  相似文献   
36.
Of 10 mammalian secreted phospholipase A(2) (sPLA(2)) enzymes identified to date, group V and X sPLA(2)s, which are two potent plasma membrane-acting sPLA(2)s, are capable of preventing host cells from being infected with adenovirus, and this anti-viral action depends on the conversion of phosphatidylcholine (PC) to lysophosphatidylcholine (LPC) in the host cell membrane. Here, we show that human group III sPLA(2), which is structurally more similar to bee venom PLA(2) than to other mammalian sPLA(2)s, also has the capacity to inhibit adenovirus infection into host cells. Mass spectrometry (MS) demonstrated that group III sPLA(2) hydrolyzes particular molecular species of PC to generate LPC in human bronchial epithelial cells. Remarkably, in addition to the catalytically active sPLA(2) domain, the N-terminal, but not C-terminal, domain unique to this enzyme was required for the anti-adenovirus effect. To our knowledge, this is the first demonstration that the biological action of group III sPLA(2) depends on its N-terminal domain. Finally, our MS analysis provided additional and novel evidence that group III, V and X sPLA(2)s target distinct phospholipid molecular species in cellular membranes.  相似文献   
37.
Andersen-Tawil syndrome (ATS) is a rare inherited channelopathy. The cardiac phenotype in ATS is typified by a prominent U wave and ventricular arrhythmia. An effective treatment for this disease remains to be established. We reprogrammed somatic cells from three ATS patients to generate induced pluripotent stem cells (iPSCs). Multi-electrode arrays (MEAs) were used to record extracellular electrograms of iPSC-derived cardiomyocytes, revealing strong arrhythmic events in the ATS-iPSC-derived cardiomyocytes. Ca2+ imaging of cells loaded with the Ca2+ indicator Fluo-4 enabled us to examine intracellular Ca2+ handling properties, and we found a significantly higher incidence of irregular Ca2+ release in the ATS-iPSC-derived cardiomyocytes than in control-iPSC-derived cardiomyocytes. Drug testing using ATS-iPSC-derived cardiomyocytes further revealed that antiarrhythmic agent, flecainide, but not the sodium channel blocker, pilsicainide, significantly suppressed these irregular Ca2+ release and arrhythmic events, suggesting that flecainide's effect in these cardiac cells was not via sodium channels blocking. A reverse-mode Na+/Ca2+exchanger (NCX) inhibitor, KB-R7943, was also found to suppress the irregular Ca2+ release, and whole-cell voltage clamping of isolated guinea-pig cardiac ventricular myocytes confirmed that flecainide could directly affect the NCX current (INCX). ATS-iPSC-derived cardiomyocytes recapitulate abnormal electrophysiological phenotypes and flecainide suppresses the arrhythmic events through the modulation of INCX.  相似文献   
38.
Staphylocoagulase (SC) is a major phenotypic determinant of Staphylococcus aureus. Serotype of SC (coagulase type) is used as an epidemiological marker and 10 types (I-X) have been discriminated so far. To clarify genetic diversity of SC within a single and among different serotype(s), we determined approximately 1500 bp-nucleotide sequences of SC gene encoding D1, D2, and central regions (N-terminal half and central regions of SC; SC(NC)) for a total of 33 S. aureus strains comprising two to three strains from individual coagulase types (I-VIII, X) and 10 strains which were not determined as previously known SC serotypes (ND-strains). Amino acid sequence identities of SC(NC) among strains with a single coagulase type of II, III, IV, V, VI and X were extremely high (more than 99%), whereas lower identity (56-87%) was observed among different types. In contrast, within a single coagulase type of I, VII, or VIII, sequence divergence was found (lowest identity; 82%). SC(NC) sequences from the ND-strains were discriminated into two genetic groups with an identity of 71% to each other (tentatively assigned to genotypes [XI] and [XII]), and exhibited less than 86% sequence identities to those of most known coagulase types. All the types [XI] and [XII] strains were methicillin susceptible and belonged to different sequence types from those of coagulase types I-X strains reported so far by multilocus sequence typing. These findings indicated genetic heterogeneity of SC in coagulase types I, VII, and VIII strains, and the presence of two novel SC genotypes related to antigenicity of SC serotypes.  相似文献   
39.
Although estrogens have been detected in some echinoderm species, their role is not clearly understood; so we examined the effects of estrogens administered to sea urchin embryos and larvae. A typical malformation was exogastrulation, induced by the exposure to ethynylestradiol (EER) in a defined period of 12 h from 12 h after fertilization (HAF). Morphogenesis for gastrulation was delayed in the treated embryos: protrusion of the archenteron started at 30 HAF when gastrulation had already finished in normal embryos. Exogastrulation induced by EER was cancelled by the antiestrogen chemical, ICI182,780. Feeding larvae were less sensitive to estrogens than those in early embryogenesis and, at certain concentrations, developed without abnormal morphology. The effect of estrogens was examined at the level of gene expression of the major yolk protein (MYP). MYP expression started during the larval stage and was suppressed by estrone at the six-armed stage, but not by β-estradiol, and in later stage larvae, the expression was not affected by treatment with either estrogen. Estrogens affect sea urchins in the early stage of embryogenesis, leading to abnormal morphogenesis and interference with gene expression.  相似文献   
40.
Although the expression of the prototypic secretory phospholipase A2 (sPLA2), group IIA (sPLA2-IIA), is known to be up-regulated during inflammation, it remains uncertain if other sPLA2 enzymes display similar or distinct profiles of induction under pathological conditions. In this study, we investigated the expression of several sPLA2s in rodent inflammation models. In lipopolysaccharide (LPS)-treated mice, the expression of sPLA2-V, and to a lesser extent that of sPLA2-IID, -IIE, and -IIF, were increased, whereas that of sPLA2-X was rather constant, in distinct tissues. 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema, in which the expression of sPLA2-IID, -IIF and -V was increased, was significantly reduced by YM-26734, a competitive sPLA2-IIA inhibitor that turned out to inhibit sPLA2-IID, -IIE, -V and -X as well. In contrast, sPLA2-IIA was dominant in carageenin-induced pleurisy in rats, where the accumulation of exudate fluids and leukocytes was significantly ameliorated by YM-26734. These results indicate that distinct sPLA2s can participate in inflammatory diseases according to tissues, animal species, and types of inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号