首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   7篇
  2022年   2篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   8篇
  2014年   14篇
  2013年   10篇
  2012年   14篇
  2011年   23篇
  2010年   9篇
  2009年   11篇
  2008年   19篇
  2007年   11篇
  2006年   15篇
  2005年   19篇
  2004年   17篇
  2003年   12篇
  2002年   11篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   3篇
  1983年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有241条查询结果,搜索用时 31 毫秒
211.
Gangliosides are known to be differentiation-inducing molecules in mammalian stem cells. We studied the interaction between the molecular structure of glycosphingolipids (GSLs) and their promoting mechanisms of the phagocytic processes in human polymorphonuclear leukocytes (PMN). The effect of various gangliosides from mammalian tissues on adhesion, phagocytosis, phagosome–lysosome (P–L) fusion and superoxide anion production was examined by human PMN using heat-killed cells of Staphylococcus aureus coated with GSLs. Gangliosides GM3, GD1a, GD3 and GT1b showed a marked stimulatory effect on the phagocytosis and P–L fusion in a dose-dependent manner, while ganglioside GM1, asialo GM1 and neutral GSLs did not. The relative phagocytic rate of ganglioside GM3-coated S. aureus was the highest among the tested GSLs. Both P–L fusion rate and phagocytosis of S. aureus were elevated significantly when coated with ganglioside GD1a, GD3 or GT1b, and GT1b gave a five times higher rate than that of the non-coated control. These results suggest that the terminal sialic acid moiety is essential for the enhancement of phagocytosis and that the number of sialic acid molecules in the ganglioside is related to the enhancement of the P–L fusion process. On the other hand, the superoxide anion release from PMN was not affected by ganglioside GM2, GM3, GD1a or GT1b. Furthermore, to clarify the trigger or the signal transduction mechanism of phagocytic processes, we examined the effect of protein kinase inhibitors such as H-7, staurosporine (protein kinase C inhibitor), H-89 (protein kinase A inhibitor), genistein (tyrosine kinase inhibitor), ML-7 (myosin light chain kinase inhibitor), and KN-62 (Ca2+/calmodulin-dependent protein kinase II inhibitor) on ganglioside-induced phagocytosis. H-7, staurosporine and KN-62 inhibited ganglioside-induced phagocytosis in the range of concentration without cell damage, while H-89, genistein and ML-7 did not. Moreover, H-7 and KN-62 inhibited ganglioside-induced P–L fusion. These results suggest that protein kinase C and Ca2+/calmodulin-dependent protein kinase II may be involved in the induction of phagocytosis and P–L fusion stimulated by gangliosides. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   
212.
213.
The PsbP is a thylakoid lumenal subunit of photosystem II (PSII), which has developed specifically in higher plants and green algae. In higher plants, the molecular function of PsbP has been intensively investigated by release-reconstitution experiments in vitro. Recently, solution of a high-resolution structure of PsbP has enabled investigation of structure-function relationships, and efficient gene-silencing techniques have demonstrated the crucial role of PsbP in PSII activity in vivo. Furthermore, genomic and proteomic studies have shown that PsbP belongs to the divergent PsbP protein family, which consists of about 10 members in model plants such as Arabidopsis and rice. Characterization of the molecular function of PsbP homologs using Arabidopsis mutants suggests that each plays a distinct and important function in maintaining photosynthetic electron transfer. In this review, recent findings regarding the molecular functions of PsbP and other PsbP homologs in higher plants are summarized, and the molecular evolution of these proteins is discussed.  相似文献   
214.
215.

Background

Genetic marking of hematopoietic stem cells (HSCs) with multiple fluorescent proteins (FPs) would allow analysis of their features, including interaction with adjacent cells. However, there are few red FPs that are comparable to green FPs in terms of low toxicity and high fluorescent intensity. This study has evaluated the usefulness of Kusabira Orange (KO) originated from the coral stone Fungia concinna as a red FP for marking of HSCs

Methods

A vector used was the MSCV‐type retroviral vector, DΔNsap that has the PCC4 cell‐passaged myeloproliferative sarcoma virus derived long terminal repeat devoid of a binding site for YY1 and the primer‐binding site derived from the dl587rev, respectively. The vector was cloned with the codon‐optimized KO cDNA for higher expression in mammalian cells (huKO) and converted to the corresponding retroviruses pseudotyped with the vesicular stomatitis virus G envelope protein, then transduced into c‐KIT+Sca‐1+Lineage? cells obtained from C57BL/6 (Ly5.1) mice followed by transplantation into lethally irradiated Ly5.2 mice.

Results

Approximately 70% of donor‐derived cells highly expressed huKO at 16 weeks post‐transplantation. Furthermore, the high expression of huKO was also detected in serially transplanted mice, suggesting that expression of huKO per se had little deleterious effect on murine hematopoiesis. In double marking experiments, huKO‐expressing hematopoietic cells were easily distinguished from those expressing EGFP by flow cytometery and fluorescent microscope analysis.

Conclusions

Overall, the results obtained from the present study suggest that huKO can be used as a valuable and versatile red fluorescent marker for HSCs. Copyright © 2008 John Wiley & Sons, Ltd.
  相似文献   
216.
Cardiomyocytes derived from mouse embryonic stem (mES) cells have been demonstrated to exhibit a time-dependent expression of ion channels and signal transduction pathways in electrophysiological studies. However, ion transporters, such as Na+/K+ ATPase (Na+ pump) or Na+/Ca2+ exchanger, which play crucial roles for cardiac function, have not been well studied in this system. In this study, we investigated the functional expression of Na+/K+ ATPase and Na+/Ca2+ exchanger in mES cells during in vitro differentiation into cardiomyocytes, as well as the functional coupling between the two transporters. By measuring [Na+]i and Na+ pump current (Ip), it was shown that an ouabain-high sensitive Na+/K+ ATPase was expressed functionally in undifferentiated mES cells and these activities increased during a time course of differentiation. Using RT-PCR, the expression of mRNA for alpha1-subunit and alpha3-subunit of the Na+/K+ ATPase could be detected in both undifferentiated mES cells and derived cardiomyocytes. In contrast alpha2-subunit mRNA could be detected only in derived cardiomyocytes but not in undifferentiated mES cells. mRNA for the Na+/Ca2+ exchanger 1 isoform (NCX1) could be detected in undifferentiated mES cells and its expression levels seemed to gradually increase throughout the differentiation accompanied by increasing its Ca2+ extrusion function. At the middle stages of differentiation (after 10-day induction), more than 75% derived cardiomyocytes exhibited [Ca2+]i oscillations by blocking of Na+/K+ ATPase, suggesting the functional coupling with Na+/Ca2+ exchanger. From these results and RT-PCR analysis, we conclude that alpha2-subunit Na+/K+ ATPase mainly contributes to establish the functional coupling with NCX1 at the middle stages of differentiation of cardiomyocytes.  相似文献   
217.
Gene redundancy is frequently found in higher plants and complicates genetic analysis. In this study, a method referred to as 'differential RNA interference (dRNAi)' was used to investigate the psbP gene family in Nicotiana tabacum. PsbP is a membrane-extrinsic subunit of PSII and plays important roles in the water splitting reaction. N. tabacum has four psbP isogenes and the function of each isogene has not yet been characterized in vivo. To obtain transgenic tobacco plants with various amounts and compositions of PsbP members, the psbP isogenes were differentially silenced by RNA interference (RNAi) using the 3'-untranslated region (UTR) as a silencing trigger (dRNAi). In addition, the extra psbP genes without the 3'-UTR were complementarily transformed into the above silenced plants, which accumulated PsbP originating from the exogenous gene while differential silencing of the endogenous target was maintained. By using dRNAi and subsequent complementation (substitution) in dRNAi, we clearly demonstrated that, regardless of the of PsbP members that were accumulated, PSII activity was linearly correlated with the total amount of PsbP. Therefore, we concluded that the protein functions of the PsbP members in N. tabacum are equivalent in vivo, whereas full expression of the four isogenes is required for optimum PSII activity. These results demonstrate that the use of dRNAi and subsequent complementation/substitution in dRNAi would provide a new experimental approach for studying the function of multigene families in plants.  相似文献   
218.
The binding specificity of designed synthetic kanamycins with model RNA sequences (wild-type and point-mutated type) derived from the 16S ribosomal A-site was evaluated using surface plasmon resonance imaging. It was observed that kanamycins have nonspecific and multiple interactions with RNA hairpins and that the binding potency is not always proportional to the antimicrobial activity.  相似文献   
219.
Clostridium perfringens epsilon-toxin, which is responsible for enterotoxaemia in ungulates, forms a heptamer in rat synaptosomal and Madin-Darby canine kidney (MDCK) cell membranes, leading to membrane permealization. Thus, the toxin may target the detergent-resistant membrane domains (DRMs) of these membranes, in analogy to aerolysin, a heptameric pore-forming toxin that associates with DRMs. To test this idea, we examined the distribution of radiolabeled epsilon-toxin in DRM and detergent-soluble membrane fractions of MDCK cells and rat synaptosomal membranes. When MDCK cells and synaptosomal membranes were incubated with the toxin and then fractionated by cold Triton X-100 extraction and flotation on sucrose gradients, the heptameric toxin was detected almost exclusively in DRMs. The results of a toxin overlay assay revealed that the toxin preferentially bound to and heptamerized in the isolated DRMs. Furthermore, cholesterol depletion by methyl-beta-cyclodextrin abrogated their association and lowered the cytotoxicity of the toxin toward MDCK cells. When epsilon-protoxin, an inactive precursor able to bind to but unable to heptamerize in the membrane, was incubated with MDCK cell membranes, it was detected mainly in their DRMs. These results suggest that the toxin is concentrated and induced to heptamerize on binding to a putative receptor located preferentially in DRMs, with all steps from initial binding through pore formation completed within the same DRMs.  相似文献   
220.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号