首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   675篇
  免费   34篇
  2022年   4篇
  2021年   8篇
  2020年   5篇
  2019年   10篇
  2018年   11篇
  2017年   14篇
  2016年   7篇
  2015年   21篇
  2014年   26篇
  2013年   31篇
  2012年   41篇
  2011年   44篇
  2010年   30篇
  2009年   25篇
  2008年   42篇
  2007年   33篇
  2006年   32篇
  2005年   40篇
  2004年   34篇
  2003年   33篇
  2002年   30篇
  2001年   20篇
  2000年   23篇
  1999年   13篇
  1998年   6篇
  1997年   7篇
  1996年   6篇
  1995年   8篇
  1994年   4篇
  1993年   6篇
  1992年   13篇
  1991年   10篇
  1990年   7篇
  1989年   8篇
  1988年   2篇
  1987年   7篇
  1986年   2篇
  1985年   7篇
  1984年   8篇
  1983年   5篇
  1982年   6篇
  1981年   2篇
  1980年   3篇
  1979年   4篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1965年   1篇
排序方式: 共有709条查询结果,搜索用时 15 毫秒
561.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is one of the causes of sudden cardiac death in young people and results from RYR2 mutations in ~60% of CPVT patients. The inheritance of the RYR2 mutations follows an autosomal dominant trait, however, de novo mutations are often identified during familial analysis. In 36 symptomatic CPVT probands with RYR2 mutations, we genotyped their parents and confirmed the origin of the respective mutation. In 26 sets of proband and both parents (trio), we identified 17 de novo mutations (65.4%), seven from their mothers and only two mutations were inherited from their fathers. Among nine sets of proband and mother, five mutations were inherited from mothers. Four other mutations were of unknown origin. The inheritance of RYR2 mutations was significantly more frequent from mothers (n = 12, 34.3%) than fathers (n = 2, 5.7%) (P = 0.013). The mean ages of onset were not significantly different in probands between de novo mutations and those from mothers. Thus, half of the RYR2 mutations in our cohort were de novo, and most of the remaining mutations were inherited from mothers. These data would be useful for family analysis and risk stratification of the disease.  相似文献   
562.
563.
The restriction-modification systems use epigenetic modification to distinguish between self and nonself DNA. A modification enzyme transfers a methyl group to a base in a specific DNA sequence while its cognate restriction enzyme introduces breaks in DNA lacking this methyl group. So far, all the restriction enzymes hydrolyze phosphodiester bonds linking the monomer units of DNA. We recently reported that a restriction enzyme (R.PabI) of the PabI superfamily with half-pipe fold has DNA glycosylase activity that excises an adenine base in the recognition sequence (5′-GTAC). We now found a second activity in this enzyme: at the resulting apurinic/apyrimidinic (AP) (abasic) site (5′-GT#C, # = AP), its AP lyase activity generates an atypical strand break. Although the lyase activity is weak and lacks sequence specificity, its covalent DNA–R.PabI reaction intermediates can be trapped by NaBH4 reduction. The base excision is not coupled with the strand breakage and yet causes restriction because the restriction enzyme action can impair transformation ability of unmethylated DNA even in the absence of strand breaks in vitro. The base excision of R.PabI is inhibited by methylation of the target adenine base. These findings expand our understanding of genetic and epigenetic processes linking those in prokaryotes and eukaryotes.  相似文献   
564.
565.
Gingival epithelial cells function as an innate host defence system to prevent intrusion by periodontal bacteria. Nevertheless, Porphyromonas gingivalis, the most well‐known periodontal pathogen, can enter gingival epithelial cells and pass through the epithelial barrier into deeper tissues. However, it is poorly understood how this pathogen exits from infected cells for further transcellular spreading. The present study was performed to elucidate the cellular machinery exploited by P. gingivalis to exit from immortalized human gingival epithelial cells. P. gingivalis was shown to be internalized with early endosomes positive for the FYVE domain of EEA1 and transferrin receptor, and about half of the intracellular bacteria were then sorted to lytic compartments, including autolysosomes and late endosomes/lysosomes, while a considerable number of the remaining organisms were sorted to Rab11‐ and RalA‐positive recycling endosomes. Inhibition experiments revealed that bacterial exit was dependent on actin polymerization, lipid rafts and microtubule assembly. Dominant negative forms and RNAi knockdown of Rab11, RalA and exocyst complex subunits (Sec5, Sec6 and Exo84) significantly disturbed the exit of P. gingivalis. These results strongly suggest that the recycling pathway is exploited by intracellular P. gingivalis to exit from infected cells to neighbouring cells as a mechanism of cell‐to‐cell spreading.  相似文献   
566.

Background  

We developed an efficient in vitro method to differentiate mouse ES cells into the definitive endoderm (DE) and then Pdx1-expressing pancreatic lineages using mesodermal-derived supporting cells, M15. Using this method, resulting ES cell-derived DE and Pdx1-expressing cells were isolated by cell sorting, and their gene expression profiles were investigated with DNA microarray. Genes that were specifically expressed in DE and/or in Pdx1-expressing cells were extracted and their expression patterns in normal embryonic development were studied.  相似文献   
567.
Interactions between GNRA tetraloops and their receptors are found frequently as modular units in various types of naturally occurring structured RNAs. Due to their functional importance, GNRA/receptor interactions have been studied extensively with regard to their 3D structures and biochemical and biophysical properties. Artificial non-natural GNRA/receptor modules have also been generated not only to obtain a better understanding of this class of motifs in natural RNA structures but also for application of these modular units to the design and construction of artificial RNA structures that can be used as platforms to generate functional RNAs applicable for nanobiotechnology. In this review, we present a survey of structures, functions, and analyses as well as artificial generation and application of GNRA/receptor interacting modules.  相似文献   
568.
The yeast Cryptococcus humicola has several attractive properties for practical applications such as in bioremediation and as a source of industrially useful enzymes and compounds. We have developed an autonomously replicating vector of C. humicola to improve its properties. We initially tried to isolate an autonomously replicating sequence (ARS) from genomic DNA by transformation using a genomic DNA library. We obtained a candidate plasmid vector harboring an ARS that gave high transformation efficiency. Southern blot analysis of transformants revealed the autonomous replication of the introduced vector in some transformants. However, the vector was not only variously altered in length but also linearized. PCR analysis indicated that a telomere-like sequence repeat (TTAGGGGG) n was added to the termini of linearized vector. Thus, we constructed an autonomously replicating linear vector having ten repeats of the telomere-like sequence at both ends. The vector transformed the yeast cells with high transformation efficiency (3230 CFU/μg of DNA), which was approximately 25-fold higher than that of a control vector lacking the repeats, and was autonomously replicated at a roughly constant size. The copy number was estimated to be less than one copy, and Ura+ mitotic stability varied widely among the transformants and was related to plasmid segregation efficiency.  相似文献   
569.
570.
Ribonuclease H3 from Bacillus stearothermophilus (Bst-RNase H3) has the N-terminal TBP-like substrate-binding domain. To identify the substrate binding site in this domain, the mutant proteins of the intact protein and isolated N-domain, in which six of the seventeen residues corresponding to those involved in DNA binding of TBP are individually mutated to Ala, were constructed. All of them exhibited decreased enzymatic activities and/or substrate-binding affinities when compared to those of the parent proteins, suggesting that the N-terminal domain of RNase H3 uses the flat surface of the β-sheet for substrate binding as TBP to bind DNA. This domain may greatly change conformation upon substrate binding.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号