首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   7篇
  241篇
  2022年   2篇
  2020年   1篇
  2019年   3篇
  2018年   4篇
  2017年   5篇
  2016年   2篇
  2015年   8篇
  2014年   14篇
  2013年   10篇
  2012年   14篇
  2011年   23篇
  2010年   9篇
  2009年   11篇
  2008年   19篇
  2007年   11篇
  2006年   15篇
  2005年   19篇
  2004年   17篇
  2003年   12篇
  2002年   11篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   3篇
  1983年   1篇
  1980年   1篇
  1979年   2篇
排序方式: 共有241条查询结果,搜索用时 15 毫秒
121.
Although perturbed lipid metabolism can often lead to skin abnormality, the role of phospholipase A(2) (PLA(2)) in skin homeostasis is poorly understood. In the present study we found that group X-secreted PLA(2) (sPLA(2)-X) was expressed in the outermost epithelium of hair follicles in synchrony with the anagen phase of hair cycling. Transgenic mice overexpressing sPLA(2)-X (PLA2G10-Tg) displayed alopecia, which was accompanied by hair follicle distortion with reduced expression of genes related to hair development, during a postnatal hair cycle. Additionally, the epidermis and sebaceous glands of PLA2G10-Tg skin were hyperplasic. Proteolytic activation of sPLA(2)-X in PLA2G10-Tg skin was accompanied by preferential hydrolysis of phosphatidylethanolamine species with polyunsaturated fatty acids as well as elevated production of some if not all eicosanoids. Importantly, the skin of Pla2g10-deficient mice had abnormal hair follicles with noticeable reduction in a subset of hair genes, a hypoplasic outer root sheath, a reduced number of melanin granules, and unexpected up-regulation of prostanoid synthesis. Collectively, our study highlights the spatiotemporal expression of sPLA(2)-X in hair follicles, the presence of skin-specific machinery leading to sPLA(2)-X activation, a functional link of sPLA(2)-X with hair follicle homeostasis, and compartmentalization of the prostanoid pathway in hair follicles and epidermis.  相似文献   
122.
Although the secreted phospholipase A(2) (sPLA(2)) family has been generally thought to participate in pathologic events such as inflammation and atherosclerosis, relatively high and constitutive expression of group X sPLA(2) (sPLA(2)-X) in restricted sites such as reproductive organs, the gastrointestinal tract, and peripheral neurons raises a question as to the roles played by this enzyme in the physiology of reproduction, digestion, and the nervous system. Herein we used mice with gene disruption or transgenic overexpression of sPLA(2)-X to clarify the homeostatic functions of this enzyme at these locations. Our results suggest that sPLA(2)-X regulates 1) the fertility of spermatozoa, not oocytes, beyond the step of flagellar motility, 2) gastrointestinal phospholipid digestion, perturbation of which is eventually linked to delayed onset of a lean phenotype with reduced adiposity, decreased plasma leptin, and improved muscle insulin tolerance, and 3) neuritogenesis of dorsal root ganglia and the duration of peripheral pain nociception. Thus, besides its inflammatory action proposed previously, sPLA(2)-X participates in physiologic processes including male fertility, gastrointestinal phospholipid digestion linked to adiposity, and neuronal outgrowth and sensing.  相似文献   
123.
ATP released from airway epithelial cells promotes purinergic receptor-regulated mucociliary clearance activities necessary for innate lung defense. Cell swelling-induced membrane stretch/strain is a common stimulus that promotes airway epithelial ATP release, but the mechanisms transducing cell swelling into ATP release are incompletely understood. Using knockdown and knockout approaches, we tested the hypothesis that pannexin 1 mediates ATP release from hypotonically swollen airway epithelia and investigated mechanisms regulating this activity. Well differentiated primary cultures of human bronchial epithelial cells subjected to hypotonic challenge exhibited enhanced ATP release, which was paralleled by the uptake of the pannexin probe propidium iodide. Both responses were reduced by pannexin 1 inhibitors and by knocking down pannexin 1. Importantly, hypotonicity-evoked ATP release from freshly excised tracheas and dye uptake in primary tracheal epithelial cells were impaired in pannexin 1 knockout mice. Hypotonicity-promoted ATP release and dye uptake in primary well differentiated human bronchial epithelial cells was accompanied by RhoA activation and myosin light chain phosphorylation and was reduced by the RhoA dominant negative mutant RhoA(T19N) and Rho and myosin light chain kinase inhibitors. ATP release and Rho activation were reduced by highly selective inhibitors of transient receptor potential vanilloid 4 (TRPV4). Lastly, knocking down TRPV4 impaired hypotonicity-evoked airway epithelial ATP release. Our data suggest that TRPV4 and Rho transduce cell membrane stretch/strain into pannexin 1-mediated ATP release in airway epithelia.  相似文献   
124.
Allosamidins, metabolites of Streptomyces with strong inhibitory activities toward family 18 chitinases, show a variety of biological activities in various organisms. We prepared photoaffinity and biotinylated probes of allosamidin and demethylallosamidin, the N-demethyl derivative that shows much stronger anti-asthmatic activity than allosamidin. Mild acid hydrolysis of allosamidins afforded mono-amine derivatives, which were amidated to prepare probes with a photoactivatable aryl azide and/or biotin moieties. The derivatives with an N-acyl group at C-2 of the D-allosamine residue at the non-reducing end of allosamidins inhibited Trichoderma chitinase as strongly as the original compounds. Since the target of allosamidins in asthma is unclear, photoaffinity probes were used to analyze allosamidin-binding proteins in bronchoalveolar lavage (BAL) fluid in IL-13-induced asthmatic mice. Ym1, a chitinase-like protein, was identified as the main allosamidin-binding protein among proteins whose expression was upregulated by IL-13 in BAL fluid. Binding of allosamidins with Ym1 was confirmed by the experiments with photoaffinity probes and recombinant Ym1.  相似文献   
125.
Leptin, a 16 kDa non-glycolated polypeptide of 146 amino acids produced by the ob gene, has a variety of physiological roles not only in lipid metabolism, hematopoiesis, thermogenesis and ovarian function, but also in angiogenesis. This study focuses to investigate the possibility that leptin, as an angiogenic factor, may regulate the angiogenesis during tooth development. We firstly studied the expression of leptin and vascular endothelial growth factor (VEGF) during tooth development immunohistochemically. This investigation revealed that leptin is expressed in ameloblasts, odontoblasts, dental papilla cells and stratum intermedium cells. This expression pattern was similar to that of VEGF, one of the most potent angiogenic factors. Interestingly, more leptin-positive cells were observed in the upper third portion of dental papilla, which is closest to odontoblastic layer, compared to middle and lower thirds. Moreover, in the dental papilla, more CD31 and/or CD34-positive vascular endothelial cells were observed in the vicinity of ameloblasts and odontoblasts expressing leptin and VEGF. These findings strongly suggest that ameloblasts, odontoblasts and dental papilla cells induce the angiogenesis in tooth germs by secretion of leptin as well as VEGF.  相似文献   
126.
The incidence and death rate of prostate cancer is increasing rapidly. In addition, the low sensitivity of prostate cancer to chemotherapy makes it difficult to treat this condition. The serine/threonine kinase Pim-1 plays an important role in cell cycle progression and apoptosis inhibition, resulting in prostate tumorigenesis. Therefore, Pim-1 inhibition has been expected to be an attractive target for developing new anti-cancer drugs. However, no small compounds targeting Pim-1 have progressed to clinical use because of their lack of specificity. Here, we have reported a new cell-permeable Pim-1 inhibitory p27(Kip1) peptide that could interfere with the binding of Pim-1 to its substrates and act as an anti-cancer drug. The peptide could bind to Pim-1 and inhibit phosphorylation of endogenous p27(Kip1) and Bad by Pim-1. Treatment of prostate cancer with the peptide induces G(1) arrest and subsequently apoptosis in vitro. However, the peptide showed almost no growth inhibitory or apoptosis-inducing effects in normal cells. The peptide could inhibit tumor growth in in vivo prostate cancer xenograft models. Moreover, the peptide treatment could overcome resistance to taxol, one of the first line chemotherapeutic agents for prostate cancer, and a combination of the peptide with taxol synergistically inhibited prostate cancer growth in vivo. These results indicate that a Pim-1 inhibitory p27(Kip1) peptide could be developed as an anti-cancer drug against prostate cancer.  相似文献   
127.
The U-box E3 ubiquitin ligase CHIP (C terminus of Hsc70-interacting protein) binds Hsp90 and/or Hsp70 via its tetratricopeptide repeat (TPR), facilitating ubiquitination of the chaperone-bound client proteins. Mechanisms that regulate the activity of CHIP are, at present, poorly understood. We previously reported that Ca2+/S100 proteins directly associate with the TPR proteins, such as Hsp70/Hsp90-organizing protein (Hop), kinesin light chain, Tom70, FKBP52, CyP40, and protein phosphatase 5 (PP5), leading to the dissociation of the interactions of the TPR proteins with their target proteins. Therefore, we have hypothesized that Ca2+/S100 proteins can interact with CHIP and regulate its function. GST pulldown assays indicated that Ca2+/S100A2 and S100P bind to the TPR domain and lead to interference with the interactions of CHIP with Hsp70, Hsp90, HSF1, and Smad1. In vitro ubiquitination assays indicated that Ca2+/S100A2 and S100P are efficient and specific inhibitors of CHIP-mediated ubiquitination of Hsp70, Hsp90, HSF1, and Smad1. Overexpression of S100A2 and S100P suppressed CHIP-chaperone complex-dependent mutant p53 ubiquitination and degradation in Hep3B cells. The association of the S100 proteins with CHIP provides a Ca2+-dependent regulatory mechanism for the ubiquitination and degradation of intracellular proteins by the CHIP-proteasome pathway.  相似文献   
128.
Studies on fatty acid and amino acid metabolism in the liver of Walker-256 tumour-bearing rats have revealed several changes. Comparisons, however, have been based on experiments performed with non-physiological, frequently unrealistic, substrate concentrations. The aim of the present work was to examine the influence of physiological substrate concentrations on gluconeogenesis, ketogenesis and related parameters. Isolated livers were perfused and substrates were infused at concentrations that were reported to occur in healthy and tumour-bearing rats. Ketogenesis and the mitochondrial NADH/NAD+ ratio were smaller in the tumour-bearing condition at low (0.2 mM) and high (0.8 mM) oleate concentrations. In the absence of oleate, gluconeogenesis from alanine (0.7 mM) and gluconeogenesis plus the associated changes in oxygen uptake due to lactate/pyruvate (2/0.2 and 6/0.3 mM) were smaller in livers of tumour-bearing rats. However, the response of gluconeogenesis from lactate/pyruvate in livers of tumour-bearing rats to 0.8 mM oleate was more pronounced so that a trend towards normalization was apparent at high substrate and oleate concentrations. Gluconeogenesis from 0.7 mM alanine was not significantly changed by oleate in the tumour-bearing state; in the control condition, stimulation occurred at 0.2 mM oleate and inhibition at 0.8 mM oleate. This diminution almost equalized the hepatic alanine-dependent gluconeogenesis of both control and tumour-bearing rats. Ureogenesis was smaller in the tumour-bearing state and was not affected by oleate. It was concluded that the high concentrations of fatty acids and lactate/pyruvate, which predominate in rats bearing the Walker-256 tumour, could be effective in normalizing the gluconeogenic response of livers from tumour-bearing rats.  相似文献   
129.
130.
We have determined the binding site on agitoxin2 (AgTx2) to the KcsA K(+) channel by a transferred cross-saturation (TCS) experiment. The residues significantly affected in the TCS experiments formed a contiguous surface on AgTx2, and substitutions of the surface residues decreased the binding affinity to the KcsA K(+) channel. Based on properties of the AgTx2 binding site with the KcsA K(+) channel, we present a surface motif that is observed in pore-blocking toxins affecting the K(+) channel. Furthermore, we also explain the structural basis of the specificity of the K(+) channel to the toxins. The TCS method utilized here is applicable not only for the channels, which are complexed with other inhibitors, but also with a variety of regulatory molecules, and provides important information about their interface in solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号