首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   419篇
  免费   31篇
  450篇
  2023年   1篇
  2021年   4篇
  2020年   1篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   5篇
  2015年   8篇
  2014年   16篇
  2013年   15篇
  2012年   29篇
  2011年   28篇
  2010年   19篇
  2009年   11篇
  2008年   32篇
  2007年   14篇
  2006年   23篇
  2005年   45篇
  2004年   41篇
  2003年   29篇
  2002年   14篇
  2001年   10篇
  2000年   6篇
  1999年   12篇
  1998年   7篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   5篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   3篇
  1989年   4篇
  1988年   6篇
  1987年   3篇
  1986年   8篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1981年   6篇
  1980年   3篇
  1979年   2篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   3篇
  1972年   2篇
  1969年   1篇
  1967年   3篇
排序方式: 共有450条查询结果,搜索用时 15 毫秒
101.
102.
103.
Proteolytic shedding is an important step in the functional down-regulation and turnover of most membrane proteins at the cell surface. Extracellular matrix metalloproteinase inducer (EMMPRIN) is a multifunctional glycoprotein that has two Ig-like domains in its extracellular portion and functions in cell adhesion as an inducer of matrix metalloproteinase (MMP) expression in surrounding cells. Although the shedding of EMMPRIN is reportedly because of cleavage by metalloproteinases, the responsible proteases, cleavage sites, and stimulants are not yet known. In this study, we found that human tumor HT1080 and A431 cells shed a 22-kDa EMMPRIN fragment into the culture medium. The shedding was enhanced by phorbol 12-myristate 13-acetate and inhibited by TIMP-2 but not by TIMP-1, suggesting the involvement of membrane-type MMPs (MT-MMPs). Indeed, down-regulation of the MT1-MMP expression in A431 cells using small interfering RNA inhibited the shedding. The 22-kDa fragment was purified, and the C-terminal amino acid was determined. A synthetic peptide spanning the cutting site was cleaved by MT1-MMP in vitro. The cleavage site is located in the linker region connecting the two Ig-like domains. The N-terminal Ig-like domain is important for the MMP inducing activity of EMMPRIN and for cell-cell interactions, presumably through its ability to engage in homophilic interactions, and the 22-kDa fragment retained the ability to augment MMP-2 expression in human fibroblasts. Thus, the MT1-MMP-dependent cleavage eliminates the functional N-terminal domain of EMMPRIN from the cell surface, which is expected to down-regulate its function. At the same time, the released 22-kDa fragment may mediate the expression of MMPs in tumor tissues.  相似文献   
104.
Receptor activator of NF-kappaB ligand (RANKL) is a transmembrane glycoprotein that has an essential role in the development of osteoclasts. The extracellular portion of RANKL is cleaved proteolytically to produce soluble RANKL, but definite RANKL sheddase(s) and the physiologic function of RANKL shedding have not yet been determined. In the present study, we found that matrix metalloproteinase (MMP) 14 and a disintegrin and metalloproteinase (ADAM) 10 have strong RANKL shedding activity. In Western blot analysis, soluble RANKL was detected as two different molecular weight products, and RNA interference of MMP14 and ADAM10 resulted in a reduction of both the lower and higher molecular weight products. Suppression of MMP14 in primary osteoblasts increased membrane-bound RANKL and promoted osteoclastogenesis in cocultures with macrophages. Soluble RANKL produced by osteoblasts from MMP14-deficient mice was markedly reduced, and their osteoclastogenic activity was promoted, consistent with the findings of increased osteoclastogenesis in vivo. RANKL shedding is an important process that down-regulates local osteoclastogenesis.  相似文献   
105.
Cells are regulated by many different means, and there is more and more evidence emerging that changes in the microenvironment greatly affect cell function. MT1-MMP is a type I transmembrane proteinase which participates in pericellular proteolysis of extracellular matrix (ECM) macromolecules. The enzyme is cellular collagenase essential for skeletal development, cancer invasion, growth, and angiogenesis. MT1-MMP promotes cell invasion and motility by pericellular ECM degradation, shedding of CD44 and syndecan1, and by activating ERK. Thus MT1-MMP is one of the factors that influence the cellular microenvironment and thereby affect cell-signaling pathways and eventually alters cellular behavior. As a proteinase, MT1-MMP is regulated by inhibitors, but it also requires formation of a homo-oligomer complex, localization to migration front of the cells, and internalization to become a "functionally active" cell function modifier. Developing new means to inhibit "functional activity" of MT1-MMP may be a new direction to establish treatments for the diseases that MT1-MMP mediates such as cancer and rheumatoid arthritis.  相似文献   
106.
We have determined the crystal structure of hypothetical protein TTHB192 from Thermus thermophilus HB8 at 1.9 A resolution. This protein is a member of the Escherichia coli ygcH sequence family, which contains approximately 15 sequence homologs of bacterial origin. These homologs have a high isoelectric point. The crystal structure reveals that TTHB192 consists of two independently folded domains, and that each domain exhibits a ferredoxin-like fold with a four-stranded antiparallel beta-sheet packed on one side by alpha-helices. These two tandem domains face each other to generate a beta-sheet platform. TTHB192 displays overall structural similarity to Sex-lethal protein and poly(A)-binding protein fragments. These proteins have RNA binding activity which is supported by a beta-sheet platform formed by two tandem repeats of an RNA recognition motif domain with signature sequence motifs on the beta-sheet surface. Although TTHB192 does not have the same signature sequence motif as the RNA recognition motif domain, the presence of an evolutionarily conserved basic patch on the beta-sheet platform could be functionally relevant for nucleic acid-binding. This report shows that TTHB192 and its sequence homologs adopt an RNA recognition motif-like domain and provides the first testable functional hypothesis for this protein family.  相似文献   
107.
108.
Pericellular proteolysis by membrane-type 1 matrix metalloproteinase (MT1-MMP) plays a pivotal role in tumor cell invasion. Localization of MT1-MMP at the invasion front of cells, e.g. on lamellipodia and invadopodia, has to be regulated in coordination with reorganization of the actin cytoskeleton. However, little is known about how such invasion-related actin structures are regulated at the sites where MT1-MMP localizes. During analysis of MT1-MMP-associated proteins, we identified a heretofore uncharacterized protein. This protein, which we call p27RF-Rho, enhances activation of RhoA by releasing it from inhibition by p27kip1 and thereby regulates actin structures. p27kip1 is a well known cell cycle regulator in the nucleus. In contrast, cytoplasmic p27kip1 has been demonstrated to bind GDP-RhoA and inhibit GDP-GTP exchange mediated by guanine nucleotide exchange factors. p27RF-Rho binds p27kip1 and prevents p27kip1 from binding to RhoA, thereby freeing the latter for activation. Knockdown of p27RF-Rho expression renders cells resistant to RhoA activation stimuli, whereas overexpression of p27RF-Rho sensitizes cells to such stimulation. p27RF-Rho exhibits a punctate distribution in invasive human tumor cell lines. Stimulation of the cells with lysophosphatidic acid induces activation of RhoA and induces the formation of punctate actin structures within foci of p27RF-Rho localization. Some of the punctate actin structures co-localize with MT1-MMP and cortactin. Down-regulation of p27RF-Rho prevents both redistribution of actin into the punctate structures and tumor cell invasion. Thus, p27RF-Rho is a new potential target for cancer therapy development.Malignant tumor cells grow invasively and form distant metastases after moving through multiple tissue barriers. Invasion requires cell locomotion together with degradation of the extracellular matrix (ECM)2 by matrix metalloproteinases (MMPs) (1). MT1-MMP (MMP-14) is an integral membrane protease that degrades a variety of protein components within the extracellular milieu (2). The substrates of MT1-MMP include a variety of components of the ECM, membrane proteins including cell adhesion molecules, and growth factors and cytokines (3). To degrade the ECM barrier in advance of an invading cell, MT1-MMP localizes to the leading edge of invasion (4) and cellular protrusions called invadopodia (57). Therefore, it is of particular interest how reorganization of actin structures is regulated at sites where MT1-MMP localizes.During mass spectrometric analysis of proteins co-purified with MT1-MMP, we identified a protein of unknown function (8). Although this protein did not affect MT1-MMP activity, we observed that enhanced expression or down-regulation of this protein affected activation of RhoA. Thus, we became interested in the possibility that this protein mediates focal reorganization of actin structures close to sites where MT1-MMP localizes.RhoA plays a pivotal role in signal transduction pathways that regulate reorganization of actin structures and does so by assuming active GTP-bound and inactive GDP-bound states, with the transition between the two forms finely regulated by many cellular proteins (9, 10). In addition to the classical modulators, recent studies have revealed that p27kip1 also regulates activation of RhoA and Rac1 (11, 12). p27kip1 has been characterized as a cyclin-dependent kinase inhibitor localized to the nucleus, but phosphorylation of p27kip1 by protein kinase B/Akt or kinase-interacting stathmin (KIS) mediates its translocation from the nucleus to the cytoplasm. Cytoplasmic p27kip1 binds RhoA and prevents activation of RhoA by GEFs (12, 13). However, it is not known how inhibition of RhoA by p27kip1 is released to allow activation. The protein we identified binds p27kip1, thereby preventing its binding to RhoA (schematically illustrated in supplemental Fig. S1). We named this protein p27RF-Rho (p27kip1 releasing factor from RhoA) based on this activity.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号