首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5000篇
  免费   315篇
  国内免费   2篇
  2022年   18篇
  2021年   58篇
  2020年   28篇
  2019年   36篇
  2018年   53篇
  2017年   46篇
  2016年   79篇
  2015年   122篇
  2014年   142篇
  2013年   236篇
  2012年   221篇
  2011年   259篇
  2010年   185篇
  2009年   173篇
  2008年   285篇
  2007年   276篇
  2006年   292篇
  2005年   272篇
  2004年   292篇
  2003年   284篇
  2002年   263篇
  2001年   147篇
  2000年   158篇
  1999年   127篇
  1998年   65篇
  1997年   62篇
  1996年   54篇
  1995年   70篇
  1994年   58篇
  1993年   53篇
  1992年   83篇
  1991年   82篇
  1990年   67篇
  1989年   57篇
  1988年   58篇
  1987年   50篇
  1986年   63篇
  1985年   43篇
  1984年   31篇
  1983年   37篇
  1982年   36篇
  1981年   18篇
  1980年   27篇
  1979年   27篇
  1978年   23篇
  1977年   22篇
  1975年   22篇
  1974年   14篇
  1971年   15篇
  1969年   20篇
排序方式: 共有5317条查询结果,搜索用时 109 毫秒
991.
Aceruloplasminemia is an autosomal recessive disorder caused by mutations in the ceruloplasmin (CP) gene. It is characterized by iron accumulation in the brain and in visceral organs. However, little is known about the mechanism of iron transport in these regions. Adult CP null (CP−/−) mice show increased iron deposition in several regions of brain, such as the cerebellum and brainstem. In this study, we investigated the expression of the ceruloplasmin homolog hephaestin (Heph) in the brain of CP−/− mice as a function of age. In the cerebral cortex and caudate putamen of 80-week-old CP−/− mice, the expression of Heph increased significantly whilst iron levels remain normal [Patel BN, Dunn RJ, Jeong SY, Zhu Q, Julien JP, David S. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J Neurosci 2002;22(15):6578–6], indicating that Heph might compensate for the loss of CP. In contrast, the substantia nigra and cerebellum of 80-week-old CP−/− mice accumulate iron but do not express high levels or significant decrease of Heph, suggesting that Heph does not replace CP in these regions. These data suggest that Heph may compensate for the loss of CP in a region-specific manner.  相似文献   
992.
Protein O-linked mannose β1,2-N-acetylglucosaminyltransferase 1 (POMGnT1) is an enzyme that transfers N-acetylglucosamine to O-mannose of glycoproteins. Mutations of the POMGnT1 gene cause muscle–eye–brain (MEB) disease. To obtain a better understanding of the pathogenesis of MEB disease, we mutated the POMGnT1 gene in mice using a targeting technique. The mutant muscle showed aberrant glycosylation of α-DG, and α-DG from mutant muscle failed to bind laminin in a binding assay. POMGnT1?/? muscle showed minimal pathological changes with very low-serum creatine kinase levels, and had normally formed muscle basal lamina, but showed reduced muscle mass, reduced numbers of muscle fibers, and impaired muscle regeneration. Importantly, POMGnT1?/? satellite cells proliferated slowly, but efficiently differentiated into multinuclear myotubes in vitro. Transfer of a retrovirus vector-mediated POMGnT1 gene into POMGnT1?/? myoblasts completely restored the glycosylation of α-DG, but proliferation of the cells was not improved. Our results suggest that proper glycosylation of α-DG is important for maintenance of the proliferative activity of satellite cells in vivo.  相似文献   
993.
MSM/Ms is an inbred mouse strain established from the Japanese wild mouse, Mus musculus molossinus, which has been phylogenetically distinct from common laboratory mouse strains for about 1 million years. The nucleotide substitution rate between MSM/Ms and C57BL/6 is estimated to be 0.96%. MSM/Ms mice display unique characteristics not observed in the commonly used laboratory strains, including an extremely low incidence of tumor development, high locomotor activity, and resistance to high-fat-diet-induced diabetes. Thus, functional genomic analyses using MSM/Ms should provide a powerful tool for the identification of novel phenotypes and gene functions. We report here the derivation of germline-competent embryonic stem (ES) cell lines from MSM/Ms blastocysts, allowing genetic manipulation of the M. m. molossinus genome. Fifteen blastocysts were cultured in ES cell medium and three ES lines, Mol/MSM-1, -2, and -3, were established. They were tested for germline competency by aggregation with ICR morulae and germline chimeras were obtained from all three lines. We also injected Mol/MSM-1 ES cells into blastocysts of ICR or C57BL/6 × BDF1 mice and found that blastocyst injection resulted in a higher production rate of chimeric mice than did aggregation. Furthermore, Mol/MSM-1 subclones electroporated with a gene trap vector were also highly efficient at producing germline chimeras using C57BL/6 × BDF1 blastocyst injection. This Mol/MSM-1 ES line should provide an excellent new tool allowing the genetic manipulation of the MSM/Ms genome.  相似文献   
994.
Metastatic bone disease is often associated with bone pain, pathologic fractures, and nerve compression syndromes. Effective therapies to inhibit the progression of bone metastases would have important clinical benefits. Therefore, we developed a novel calcium phosphate-binding liposome for a bone-targeting drug delivery system. We synthesized a novel amphipathic molecule bearing a bisphosphonate (BP) head group to recognize and bind to hydroxyapatite (HA). We demonstrated that the liposomes having BP moieties show high affinity for HA. Doxorubicin-loaded liposomes adsorbed on the surface of HA significantly reduce the number of viable human osteosarcoma MG63 cells. This shows that the liposomes can be excellent carriers for anticancer drugs because they specifically target bone tissue. This calcium phosphate-binding liposome system could be used with many drugs for bone-related diseases such as osteoporosis, rheumatoid arthritis, and multiple myeloma.  相似文献   
995.
To understand the mechanistic basis of cold temperature stress and the role of the auxin response, we characterized root growth and gravity response of Arabidopsis thaliana after cold stress, finding that 8 to 12 h at 4°C inhibited root growth and gravity response by ∼50%. The auxin-signaling mutants axr1 and tir1, which show a reduced gravity response, responded to cold treatment like the wild type, suggesting that cold stress affects auxin transport rather than auxin signaling. Consistently, expression analyses of an auxin-responsive marker, IAA2-GUS, and a direct transport assay confirmed that cold inhibits root basipetal (shootward) auxin transport. Microscopy of living cells revealed that trafficking of the auxin efflux carrier PIN2, which acts in basipetal auxin transport, was dramatically reduced by cold. The lateral relocalization of PIN3, which has been suggested to mediate the early phase of root gravity response, was also inhibited by cold stress. Additionally, cold differentially affected various protein trafficking pathways. Furthermore, the inhibition of protein trafficking by cold is independent of cellular actin organization and membrane fluidity. Taken together, these results suggest that the effect of cold stress on auxin is linked to the inhibition of intracellular trafficking of auxin efflux carriers.  相似文献   
996.
High-salt diets decrease insulin sensitivity in salt-sensitive hypertensive rats, and glucocorticoids promote adipocyte growth and may have pathophysiological roles in the metabolic syndrome. The aim of this study was to clarify the relationship between high-salt diet and the adipocyte glucocorticoid hormones in salt-sensitive hypertensive rats. Six-week-old Dahl salt-sensitive (DS) hypertensive rats and salt-resistant (DR) rats were fed a high-salt diet or a normal-salt diet for 4 weeks. Fasting blood glucose (FBG), serum adiponectin, plasma insulin, and corticosterone in plasma and in visceral adipose tissues, 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activities in adipose tissues and glucose uptake in isolated muscle were measured. Animals underwent an oral glucose tolerance test (OGTT). The expression of mRNA for glucocorticoid receptor (GR), 11β-HSD1 and tumor necrosis factor-α (TNF-α) in adipose tissues were measured using a real-time PCR. A high-salt diet did not influence FBG; however, decreased 2-deoxy glucose uptake and plasma insulin during OGTT in DS rats. The high-salt diet increased significantly adipose tissue corticosterone concentration and 11β-HSD1 activities, gene expression for GR, 11β-HSD1 and TNF-α in adipose tissues in DS rats compared with DR rats (p < 0.05). The high-salt diet did not influence plasma corticosterone and serum adiponectin concentration in DS and DR rats. These results suggest that changes in GR and 11β-HSD1 in adipose tissue may contribute to insulin sensitivity in salt-sensitive hypertensive rats.  相似文献   
997.
Catechol-O-methyltransferase (COMT, EC 2.1.1.6) is a monomeric enzyme that catalyzes the transfer of a methyl group from S-adenosyl-l-methionine (AdoMet) to the phenolic oxygen of substituted catechols. Although the inhibitor recognition pattern and AdoMet site have already been studied crystallographically, structural information on the catalytic cycle of COMT has not yet been obtained. In this study, comparison of the co-factor and inhibitor-bound structures revealed that the Apo form of COMT shows a conformational change and there was no cleft corresponding to the AdoMet-binding site; the overall structure was partially open form and the substrate recognition site was not clearly defined. The Holo form of COMT was similar to the quaternary structure except for the β6–β7 and α2–α3 ligand recognition loops. These conformational changes provide a deeper insight into the structural events occurring in reactions catalyzed by AdoMet.  相似文献   
998.
Rapid depletion of memory CD4+ T cells and delayed induction of neutralizing antibody (NAb) responses are characteristics of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infections. Although it was speculated that postinfection NAb induction could have only a limited suppressive effect on primary HIV replication, a recent study has shown that a single passive NAb immunization of rhesus macaques 1 week after SIV challenge can result in reduction of viral loads at the set point, indicating a possible contribution of postinfection NAb responses to virus control. However, the mechanism accounting for this NAb-triggered SIV control has remained unclear. Here, we report rapid induction of virus-specific polyfunctional T-cell responses after the passive NAb immunization postinfection. Analysis of SIV Gag-specific responses of gamma interferon, tumor necrosis factor alpha, interleukin-2, macrophage inflammatory protein 1β, and CD107a revealed that the polyfunctionality of Gag-specific CD4+ T cells, as defined by the multiplicity of these responses, was markedly elevated in the acute phase in NAb-immunized animals. In the chronic phase, despite the absence of detectable NAbs, virus control was maintained, accompanied by polyfunctional Gag-specific T-cell responses. These results implicate virus-specific polyfunctional CD4+ T-cell responses in this NAb-triggered virus control, suggesting possible synergism between NAbs and T cells for control of HIV/SIV replication.Virus-specific CD4+ and CD8+ T-cell responses are crucial for the control of pathogenic human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus (SIV) infections (5, 6, 20, 23, 30, 39, 40). However, CD4+ T cells, especially CCR5+ memory CD4+ T cells, are themselves targets for these viruses, which may be an obstacle to potent virus-specific CD4+ T-cell induction (10, 47, 52). Indeed, HIV-1/SIV infection causes rapid, massive depletion of memory CD4+ T cells (26, 31), and host immune responses fail to contain viral replication and allow persistent chronic infection, although virus-specific CD8+ T-cell responses exert suppressive pressure on viral replication (15).Recently, the importance of T-cell quality in virus containment has been high-lighted, and T-cell polyfunctionality, which is defined by their multiplicity of antigen-specific cytokine production, has been analyzed as an indicator of T-cell quality (4, 8, 11, 41). However, there has been no evidence indicating an association of polyfunctional T-cell responses in the acute phase with HIV-1/SIV control. Even in the chronic phase, whether polyfunctional CD4+ T-cell responses may be associated with virus control has been unclear, although an inverse correlation between polyfunctional CD8+ T-cell responses and viral loads has been shown in HIV-1-infected individuals (4).Another characteristic of HIV-1/SIV infections is the absence of potent neutralizing antibody (NAb) induction during the acute phase (7). This is mainly due to the unusually neutralization-resistant nature of the virus, such as masking of target epitopes in viral envelope proteins (24). Whether this lack of effective NAb response contributes to the failure to control the virus, and whether NAb induction in the acute phase can contribute to virus control, remains unclear. Previous studies documenting virus escape from NAb recognition suggested that NAbs can also exert selective pressure on viral replication to a certain extent (38, 45, 49), but it was speculated that postinfection NAb induction could have only a limited suppressive effect on primary HIV-1/SIV replication (34, 37).By passive NAb immunization of rhesus macaques after SIV challenge, we recently provided evidence indicating that the presence of NAbs during the acute phase can result in SIV control (50). In that study, passive NAb immunization 1 week after SIVmac239 challenge resulted in transient detectable NAb responses followed by reduction in set point viral loads compared to unimmunized macaques. However, the mechanism of this virus control has remained unclear. In the present study, we found rapid appearance of polyfunctional Gag-specific CD4+ T-cell responses after such passive NAb immunization postinfection. These animals maintained virus control for more than 1 year in the absence of detectable plasma NAbs, which was accompanied by potent Gag-specific T-cell responses. These results implicate virus-specific polyfunctional CD4+ T-cell responses in this NAb-triggered primary and long-term SIV control.  相似文献   
999.
The majority of CDF/ZnT zinc transporters form homo-oligomers. However, ZnT5, ZnT6, and their orthologues form hetero-oligomers in the early secretory pathway where they load zinc onto zinc-requiring enzymes and maintain secretory pathway functions. The details of this hetero-oligomerization remain to be elucidated, and much more is known about homo-oligomerization that occurs in other CDF/ZnT family proteins. Here, we addressed this issue using co-immunoprecipitation experiments, mutagenesis, and chimera studies of hZnT5 and hZnT6 in chicken DT40 cells deficient in ZnT5, ZnT6, and ZnT7 proteins. We found that hZnT5 and hZnT6 combine to form heterodimers but do not form complexes larger than heterodimers. Mutagenesis of hZnT6 indicated that the sites present in transmembrane domains II and V in which many CDF/ZnT proteins have conserved hydrophilic amino acid residues are not involved in zinc binding of hZnT6, although they are required for zinc transport in other CDF/ZnT family homo-oligomers. We also found that the long N-terminal half of hZnT5 is not necessary for its functional interaction with hZnT6, whereas the cytosolic C-terminal tail of hZnT5 is important in determining hZnT6 as a partner molecule for heterodimer formation. In DT40 cells, cZnT5 variant lacking the N-terminal half was endogenously induced during periods of endoplasmic reticulum stress and so seemed to function to supply zinc to zinc-requiring enzymes under these conditions. The results outlined here provide new information about the mechanism of action through heterodimerization of CDF/ZnT proteins that function in the early secretory pathway.  相似文献   
1000.
Osteoporosis is caused by a failure of bone homeostasis, but the precise molecular mechanisms controlling bone homeostasis are largely unknown. Increasing evidence that neurons and neurotransmitters are intimately involved in bone remodelling has shed light on a novel regulatory mechanism for bone homeostasis. Namely, like all other homeostatic functions, bone remodelling is under the control of the hypothalamus, and osteoporosis is considered to be a neuroskeletal disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号