首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2976篇
  免费   148篇
  国内免费   2篇
  2021年   38篇
  2020年   21篇
  2019年   31篇
  2018年   37篇
  2017年   40篇
  2016年   58篇
  2015年   80篇
  2014年   93篇
  2013年   156篇
  2012年   143篇
  2011年   181篇
  2010年   121篇
  2009年   101篇
  2008年   209篇
  2007年   178篇
  2006年   177篇
  2005年   171篇
  2004年   182篇
  2003年   162篇
  2002年   143篇
  2001年   67篇
  2000年   73篇
  1999年   51篇
  1998年   45篇
  1997年   48篇
  1996年   24篇
  1995年   39篇
  1994年   22篇
  1993年   26篇
  1992年   42篇
  1991年   42篇
  1990年   36篇
  1989年   26篇
  1988年   20篇
  1987年   24篇
  1986年   19篇
  1985年   17篇
  1984年   17篇
  1983年   20篇
  1982年   20篇
  1981年   8篇
  1980年   13篇
  1979年   9篇
  1978年   10篇
  1977年   12篇
  1974年   7篇
  1973年   8篇
  1972年   7篇
  1970年   7篇
  1966年   8篇
排序方式: 共有3126条查询结果,搜索用时 15 毫秒
91.
92.
Photosynthetic organisms have diversified light-harvesting complexes (LHCs) to collect solar energy efficiently, leading to an acquisition of their ecological niches. Herein we report on biochemical and spectroscopic characterizations of fucoxanthin chlorophyll a/c-binding protein (FCP) complexes isolated from a marine pinguiophyte Glossomastix chrysoplasta. The pinguiophyte FCP showed one subunit band in SDS-PAGE and one protein-complex band with a molecular weight at around 66 kDa in clear-native PAGE. By HPLC analysis, the FCP possesses chlorophylls a and c, fucoxanthin, and violaxanthin. To clarify excitation-energy-relaxation processes in the FCP, we measured time-resolved fluorescence spectra at 77 K of the FCP adapted to pH 5.0, 6.5, and 8.0. Fluorescence curves measured at pH 5.0 and 8.0 showed shorter lifetime components compared with those at pH 6.5. The rapid decay components at pH 5.0 and 8.0 are unveiled by fluorescence decay-associated (FDA) spectra; fluorescence decays occur in the 270 and 160-ps FDA spectra only at pH 5.0 and 8.0, respectively. In addition, energy-transfer pathways with time constants of tens of picoseconds are altered under the basic pH condition but not the acidic pH condition. These findings provide novel insights into pH-dependent energy-transfer and energy-quenching machinery in not only FCP family but also photosynthetic LHCs.  相似文献   
93.
The plasma membranes of archaea are abundant in macrocyclic tetraether lipids that contain a single or double long transmembrane hydrocarbon chains connecting the two glycerol backbones at both ends. In this study, a novel amacrocyclic bisphosphatidylcholine lipid bearing a single membrane-spanning octacosamethylene chain, 1,1’-O-octacosamethylene-2,2′-di-O-tetradecyl-bis-(sn-glycero)-3,3′-diphosphocholine (AC-(di-O-C14PC)2), was synthesized to elucidate effects of the interlayer cross-linkage on membrane properties based on comparison with its corresponding diether phosphatidylcholine, 1,2-di-O-tetradecyl-sn-glycero-3-phosphocholine (DTPC), that forms bilayer membrane. Several physicochemical techniques demonstrated that while AC-(di-O-C14PC)2 monolayer, which adopts a particularly high-ordered structure in the gel phase, shows remarkably high thermotropic transition temperature compared to DTPC bilayer, the fluidity of both phospholipids above the transition temperature is comparable. Nonetheless, the fluorescent dye leakage from inside the AC-(di-O-C14PC)2 vesicles in the fluid phase is highly suppressed. The origin of the membrane properties characteristic of AC-(di-O-C14PC)2 monolayer is discussed in terms of the single long transmembrane hydrophobic linkage and the diffusional motion of the lipid molecules.  相似文献   
94.
DNA replication in eukaryotes is a multi-step process that consists of three main reactions: helicase loading (licensing), helicase activation (firing), and nascent DNA synthesis (elongation). Although the contributions of some chromatin regulatory factors in the licensing and elongation reaction have been determined, their functions in the firing reaction remain elusive. In the budding yeast Saccharomyces cerevisiae, Sld3, Sld7, and Cdc45 (3–7–45) are rate-limiting in the firing reaction and simultaneous overexpression of 3–7–45 causes untimely activation of late and dormant replication origins. Here, we found that 3–7–45 overexpression not only activated dormant origins in the silenced locus, HMLα, but also exerted an anti-silencing effect at this locus. For these, interaction between Sld3 and Esa1, a conserved histone acetyltransferase, was responsible. Moreover, the Sld3–Esa1 interaction was required for the untimely activation of late origins. These results reveal the Sld3–Esa1 interaction as a novel level of regulation in the firing reaction.  相似文献   
95.
96.
Previously we reported that, lactic acid bacteria (LAB) can induce human dermal fibroblast (HDF) cells to form multipotent cell clusters which are able to transdifferentiate into three germ layer derived cell lineages. Later on, we confirmed that ribosome is responsible for the LAB-induced transdifferentiation and ribosomes from diverse organisms can mimic the LAB effect on HDF cells. In our present study we have shown that, upon incorporation of ribosomes, non-small cell lung cancer cell line A549 and gastric tubular adenocarcinoma cell line H-111-TC are transformed into spheroid like morphology those can be transdifferentiated into adipocytes and osteoblast. Our qPCR analysis has revealed that, during the formation of ribosome induced cancer cell spheroids, the expression of the cancer cell associated markers and cell cycle/proliferation markers were altered at different time point. Through our investigation, here we report a novel and a non-invasive approach for cancer cell reprogramming by incorporating ribosomes.  相似文献   
97.
Fibroblast growth factor (FGF) 23 produced by the bone is the principal hormone to regulate serum phosphate level. Serum FGF23 needs to be tightly regulated to maintain serum phosphate in a narrow range. Thus, we hypothesized that the bone has some phosphate-sensing mechanism to regulate the production of FGF23. Previously we showed that extracellular phosphate induces the phosphorylation of FGF receptor 1 (FGFR1) and FGFR1 signaling regulates the expression of Galnt3, whose product works to increase FGF23 production in vitro. In this study, we show the significance of FGFR1 in the regulated FGF23 production and serum phosphate level in vivo. We generated late-osteoblast/osteocyte-specific Fgfr1-knockout mice (Fgfr1fl/fl; OcnCre/+) by crossing the Ocn-Cre and the floxed Fgfr1 mouse lines. We evaluated serum phosphate and FGF23 levels, the expression of Galnt3 in the bone, the body weight and life span. A selective ablation of Fgfr1 aborted the increase of serum active full-length FGF23 and the enhanced expression of Galnt3 in the bone by a high phosphate diet. These mice showed more pronounced hyperphosphatemia compared with control mice. In addition, these mice fed with a control diet showed body weight loss after 23 weeks of age and shorter life span. These results reveal a novel significance of FGFR1 signaling in the phosphate metabolism and normal life span.  相似文献   
98.
We examine decoupling conditions of domestic extraction of materials, energy use, and sulfur dioxide (SO2) emissions from gross domestic product (GDP) for two BRIC (Brazil, Russia, India and China) countries (i.e., China and Russia) and two Organisation for Economic Co‐operation and Development (OECD) countries (Japan and the United States) during 2000–2007, using a pair of decoupling indicators for resource use (Dr) and waste emissions (De) and the decoupling chart, which can distinguish between absolute decoupling, relative decoupling, and non‐decoupling. We find that (1) during 2000–2007, decoupling between environmental indicators and GDP was higher in the two OECD countries as compared with the two BRIC countries. The key reason is that these countries were in different development stages with different economic growth rates. (2) Changes in environmental policies can significantly influence the degree of decoupling in a country. (3) China, Japan, and the United States were more successful in decoupling SO2 emissions from GDP than in decoupling material and energy use from GDP. The main reason is that, unlike resource use, waste emissions (e.g., SO2 emissions) can be reduced by effective end‐of‐pipe treatment. (4) The decoupling indicator is different from the changing rate of resource use and waste emissions. If two countries have different GDP growth rates, even though they may have similar values using the decoupling indicator, they may show different rates of change for resource use and waste emissions.  相似文献   
99.
The chemical modifications of rabbit liver carbonyl reductase (RLCR) with phenylglyoxal (PGO) and 2,3,4-trinitrobenzenesulfonate sodium (TNBS), which are respective chemical modifiers of arginine and lysine residues, were examined. RLCR was rapidly inactivated by these modifiers. Kinetic data for the inactivation demonstrated that each one of arginine and lysine residues is essential for catalytic activity of the enzyme. Furthermore, based on the protective effects of NADP +, NAD + and their constituents against the inactivation of RLCR by PGO and TNBS, we propose the possibility that the functional arginine and lysine residues are located in the coenzyme-binding domain of RLCR and interact with the 2′-phosphate group of NADPH.  相似文献   
100.
The selenium (Se)-containing antioxidant selenoneine (2-selenyl-N α,N α,N α-trimethyl-l-histidine) has recently been discovered to be the predominant form of organic Se in tuna blood. Although dietary intake of fish Se has been suggested to reduce methylmercury (MeHg) toxicity, the molecular mechanism of MeHg detoxification by Se has not yet been determined. Here, we report evidence that selenoneine accelerates the excretion and demethylation of MeHg, mediated by a selenoneine-specific transporter, organic cations/carnitine transporter-1 (OCTN1). Selenoneine was incorporated into human embryonic kidney HEK293 cells transiently overexpressing OCTN1 and zebrafish blood cells by OCTN1. The K m for selenoneine uptake was 13.0 μM in OCTN1-overexpressing HEK293 cells and 9.5 μM in zebrafish blood cells, indicating high affinity of OCTN1 for selenoneine in human and zebrafish cells. When such OCTN1-expressing cells and embryos were exposed to MeHg–cysteine (MeHgCys), MeHg accumulation was decreased and the excretion and demethylation of MeHg were enhanced by selenoneine. In addition, exosomal secretion vesicles were detected in the culture water of embryos that had been microinjected with MeHgCys, suggesting that these may be responsible for MeHg excretion and demethylation. In contrast, OCTN1-deficient embryos accumulated MeHg, and MeHg excretion and demethylation were decreased. Furthermore, Hg accumulation was decreased in OCTN1-overexpressing HEK293 cells, but not in mock vector-transfected cells, indicating that selenoneine and OCTN1 can regulate MeHg detoxification in human cells. Thus, the selenoneine-mediated OCTN1 system regulates secretory lysosomal vesicle formation and MeHg demethylation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号