首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   893篇
  免费   34篇
  2022年   4篇
  2021年   6篇
  2019年   14篇
  2018年   8篇
  2017年   2篇
  2016年   17篇
  2015年   29篇
  2014年   29篇
  2013年   95篇
  2012年   37篇
  2011年   49篇
  2010年   26篇
  2009年   44篇
  2008年   38篇
  2007年   40篇
  2006年   33篇
  2005年   54篇
  2004年   64篇
  2003年   57篇
  2002年   56篇
  2001年   11篇
  2000年   8篇
  1999年   11篇
  1998年   21篇
  1997年   16篇
  1996年   7篇
  1995年   8篇
  1994年   12篇
  1993年   14篇
  1992年   10篇
  1991年   4篇
  1990年   10篇
  1989年   6篇
  1988年   6篇
  1987年   6篇
  1986年   6篇
  1985年   3篇
  1984年   7篇
  1983年   9篇
  1982年   9篇
  1981年   11篇
  1980年   8篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1974年   3篇
  1972年   2篇
  1965年   1篇
  1963年   1篇
  1954年   1篇
排序方式: 共有927条查询结果,搜索用时 15 毫秒
101.
Kobayashi K  Mustafa G  Tagawa S  Yamada M 《Biochemistry》2005,44(41):13567-13572
The membrane-bound quinoprotein glucose dehydrogenase (mGDH) in Escherichia coli contains pyrroloquinoline quinone (PQQ) and participates in the direct oxidation of D-glucose to D-gluconate by transferring electrons to ubiquinone (UQ). To elucidate the mechanism of ubiquinone reduction by mGDH, we applied a pulse radiolysis technique to mGDH with or without bound UQ8. With the UQ8-bound enzyme, a hydrated electron reacted with mGDH to form a transient species with an absorption maximum at 420 nm, characteristic of formation of a neutral ubisemiquinone radical. Subsequently, the decay of the absorbance at 420 nm was accompanied by an increase in the absorbance at 370 nm. Experiments with the PQQ-free apoenzyme showed no such subsequent absorption changes, although ubisemiquinone was formed. These results indicate that a pathway for an intramolecular electron transfer from ubisemiquinone radical at the UQ8 binding site to PQQ exists in mGDH. The first-order rate constant of this process was calculated to be equal to 1.2 x 10(3) s(-1). These findings are consistent with our proposal that during the catalytic cycle of mGDH the bound UQ8 mediates electron transfer from the reduced PQQ to UQ8 pools.  相似文献   
102.
When skin fibroblasts were cultured on fibrillar collagen I gel, we observed rapid degradation of talin, fodrin and ezrin, which are well-known calpain substrates. The protease m-calpain was activated only in cells adhering to fibrillar collagen, whereas micro-calpain was activated in cells adhering to monomeric or fibrillar collagen at the same level. The calpain inhibitor Z-Leu-Leu-aldehyde inhibited degradation of fodrin, but not talin. Degradation of fodrin, alpha-actinin and ezrin was prevented by over-expression of dominant negative m-calpain. However, over-expression of calpastatin, an endogenous calpain inhibitor, had no effect the degradation of these three proteins. These results suggest that m-calpain is responsible for degradation of their membrane proteins via adhesion to fibrillar collagen I gel.  相似文献   
103.
The Clostridium perfringens strain 13 genome contains two genes (fbpA, fbpB) that encode putative Fbp. Both rFbpA and rFbpB were purified and their reactivity with human serum Fn was analyzed. To determine the region of the Fn molecule recognized by rFbp, a plate binding assay using N‐terminal 70‐kDa peptide, III1‐C peptide, and 110‐kDa peptide containing III2–10 of Fn was performed. Both rFbp bound to the III1‐C peptide of Fn but not to the other peptides. However, the III1‐C fragment of Fn is known to be cryptic in serum Fn. Then, rFbp‐BP from Fn were purified by rFbp‐affinity chromatography. The yield of purified proteins was approximately 1% of the applied Fn on a protein basis. Western blotting analysis of the rFbp‐BP, using four different anti‐Fn monoclonal antibodies, revealed that the rFbp‐BP carried partial Fn antigenicity. Bindings of rFbp to rFbp‐BP were inhibited by the presence of the III1‐C peptide, suggesting that rFbp‐BP express the III1‐C fragment. The binding of Fn to III1‐C was inhibited by the presence of either rFbpA or rFbpB. This result that suggests C. perfringens Fbps may inhibit the formation of Fn‐matrix in vivo.  相似文献   
104.
The number of diabetic patients is increasing every year, and new model animals are required to study the diverse aspects of this disease. An experimental obese animal model has reportedly been obtained by injecting monosodium glutamate (MSG) to a mouse. We found that ICR-MSG mice on which the same method was used developed glycosuria. Both female and male mice were observed to be obese but had no polyphagia, and were glycosuric by 29 weeks of age, with males having an especially high rate of incidence (70.0%). Their blood concentrations of glucose, insulin, total cholesterol, and triglycerides were higher than in the control mice at 29 weeks. These high concentrations appeared in younger males more often than in females, and were severe in adult males. Also, the mice at 54 weeks of age showed obvious obesity and increased concentrations of glucose, insulin, and total cholesterol in the blood. The pathological study of ICR-MSG female and male mice at 29 weeks of age showed hypertrophy of the pancreatic islet. This was also observed in most of these mice at 54 weeks. It was recognized as a continuation of the condition of diabetes mellitus. From the above results, these mice are considered to be useful as new experimental model animals developing a high rate of obese type 2 (non-insulin dependent) diabetes mellitus without polyphagia.  相似文献   
105.
Biosynthetic diversity in plant triterpene cyclization   总被引:5,自引:0,他引:5  
Plants produce a wealth of terpenoids, many of which have been the tools of healers and chiefs for millennia. Recent research has led to the identification and characterization of many genes that are responsible for the biosynthesis of triterpenoids. Cyclases that generate sterol precursors can be recognized with some confidence on the basis of sequence; several catalytically important residues are now known, and the product profiles of sterol-generating cyclases typically reflect their phylogenetic position. By contrast, the phylogenetic relationships of cyclases that generate nonsteroidal triterpene alcohols do not consistently reflect their catalytic properties and might indicate recent and rapid catalytic evolution.  相似文献   
106.
Precise modification of plant genomes via gene targeting (GT) is important for the study of gene function in vivo. A reliable GT system using the protoporphyrinogen oxidase (PPO) gene in Arabidopsis was reported 4 years ago; however, there are no subsequent successful reports of GT in Arabidopsis. A previous study showed ectopic gene targeting (EGT) of the endogenous gene in two-thirds of GT plants, which was an obstacle to efficient true gene targeting (TGT). The endogenous acetolactate synthase (ALS) gene is involved in the biosynthesis of branched chain amino acids in plants and is the site of action of several herbicides. To confirm the generality of the GT system in Arabidopsis, and to characterize the EGT event in plants in detail, we converted ALS from a herbicide (imazapyr)-susceptible to a -resistant form by GT. We obtained two imazapyr-resistant plants following GT. One of the targeting events was TGT while the other was EGT. After detailed Southern blotting, PCR and nucleotide sequence analysis of the EGT plant, we determined the genomic position and structure of the ectopically targeted site. Based on our findings, we discuss the possible mechanisms of EGT in plants.  相似文献   
107.
Mdm2, a RING-finger type ubiquitin ligase, is overexpressed in a variety of human cancers. It promotes ubiquitination of the tumor suppressor p53 and can function as an oncogene by largely downregulating p53. Recently, we reported that Mdm2 degrades retinoblastoma tumor suppressor protein (pRB) via the ubiquitin-proteasome system. In the present study, we assessed the effects of MdmX, a structural homolog of Mdm2, on the Mdm2-mediated ubiquitination of pRB. MdmX is known to negatively regulate p53 function by enhancing the Mdm2-mediated ubiquitination and degradation of p53. Interestingly, MdmX inhibited the Mdm2-mediated pRB ubiquitination. Furthermore, an MdmX siRNA decreased the endogenous pRB level, while MdmX overexpression stimulated pRB functions in cultured cells. Therefore, MdmX may have different roles in the regulation of Mdm2 activity for ubiquitination of pRB and p53.  相似文献   
108.
We studied the synergistic effect of visible light and ferritin on the lipid peroxidation on a fraction of porcine photoreceptor outer segment (POS). Reaction mixtures containing the POS fraction and horse spleen ferritin were irradiated under white fluorescent light mainly at 17,000 lx or incubated under dark conditions at 37°C. The lipid peroxidation was evaluated by both the thiobarbituric acid method and the ferrous oxidation/xylenol orange method. The irradiation-induced lipid peroxidation was affected by some experimental factors such as the irradiation dose and acidity of the material. When the irradiation was stopped, the lipid peroxidation was also stopped; thereafter, the re-irradiation induced lipid peroxidation. Moreover, this lipid peroxidation was inhibited by desferrioxamine, an iron chelator, or by dimethylthiourea, a hydroxyl radical scavenger, suggesting that the lipid peroxidation involves hydroxyl radicals generated via the Fenton reaction by iron ion released from ferritin. The lipid peroxidation did not take place under dark conditions or in the absence of ferritin. This study suggested the possibility that the visible light-induced lipid peroxidation of the POS fraction in the presence of ferritin may participate in the etiology of human retinal degenerative diseases as the human retina is exposed to light for life.  相似文献   
109.
Evolutionary engineered polyhydroxyalkanoate (PHA) synthases from Pseudomonas sp. 61-3 enhance PHA accumulation and enable the monomer composition of PHAs to be regulated. We characterized a newly screened Ser477Arg (S477R) mutant of PHA synthase by in vivo analyses of P(3-hydroxybutyrate) [P(3HB)] homopolymer and P(3HB-co-3-hydroxyalkanoate) [P(3HB-co-3HA)] copolymer productions in the recombinants of Escherichia coli. The results indicated that the S477R mutation contributed to a shift in substrate specificity to smaller monomers containing a 3HB unit rather than to an enhancement in catalytic activity. Multiple mutations of S477R with other beneficial mutations, for example, Ser325Cys, exhibited synergistic effects on both an increase in PHA production (from 9 wt % to 21 wt %) and an alteration of substrate specificity. Furthermore, the effects of complete amino acid substitutions at position 477 were characterized in terms of in vivo PHA production and in vitro enzymatic activity. The five mutations, S477Ala(A)/Phe(F)/His(H)/Arg(R)/Tyr(Y), resulted in a shift in substrate specificity to smaller monomer units. The S477Gly(G) mutant greatly enhanced activity toward all different sizes of substrates with carbon numbers ranging from 4 to 12. These results indicated that the residue 477 contributes to both the catalytic activity and substrate specificity of PHA synthase. In recombinant E. coli, the S477A/F/G/H/R/Y mutations consistently led to increases (up to 6 times that of wild-type enzyme) in weight average molecular weights of P(3HB) homopolymers. On the basis of our studies, we created a structural feasibility accounting for the mutational effects on enzymatic activity and substrate specificity of PHA synthase.  相似文献   
110.
We have made xeroderma pigmentosum group A gene (XPA)-knockout mice (XPA(-/-) mice). The XPA(-/-) mice had no detectable activity for nucleotide excision repair (NER) and showed a high incidence of UVB-induced skin tumorigenesis. We have also found that cell lines derived from skin cancers in UVB-irradiated XPA(-/-) mice become tolerant to UV-irradiation and showed abnormal UV-induced cell cycle checkpoints and decreased mismatch repair (MMR) activity. These results suggested that the MMR-downregulation may help cells escape killing by UV-irradiation and thus MMR-deficient clones are selected for during the tumorigenic transformation of XPA(-/-) cells. In this report, we examined whether the incidence of UVB-induced skin tumorigenesis is enhanced in XPA(-/-)MSH2(-/-), XPA(-/-) and MSH2(-/-) mice when compared with that in wild-type mice. Our results indicate that the MSH2-deficiency caused a high incidence of spontaneous and UVB-induced skin tumorigenesis and the XPA and MSH2 genes have additive roles in the UV-induced skin tumorigenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号