首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2834篇
  免费   240篇
  2023年   12篇
  2022年   36篇
  2021年   51篇
  2020年   33篇
  2019年   41篇
  2018年   65篇
  2017年   38篇
  2016年   88篇
  2015年   149篇
  2014年   173篇
  2013年   188篇
  2012年   250篇
  2011年   236篇
  2010年   127篇
  2009年   129篇
  2008年   191篇
  2007年   181篇
  2006年   145篇
  2005年   148篇
  2004年   118篇
  2003年   109篇
  2002年   98篇
  2001年   36篇
  2000年   27篇
  1999年   39篇
  1998年   25篇
  1997年   24篇
  1996年   11篇
  1995年   13篇
  1994年   9篇
  1992年   16篇
  1991年   12篇
  1990年   12篇
  1989年   16篇
  1988年   11篇
  1987年   17篇
  1986年   13篇
  1985年   14篇
  1984年   15篇
  1983年   19篇
  1982年   13篇
  1981年   9篇
  1980年   14篇
  1979年   12篇
  1978年   12篇
  1976年   6篇
  1975年   8篇
  1973年   7篇
  1972年   7篇
  1971年   7篇
排序方式: 共有3074条查询结果,搜索用时 15 毫秒
941.
Quantitative proteome research is greatly promoted by high-resolution parallel format assays. A characterization of protein complexes based on binding forces offers an unparalleled dynamic range and allows for the effective discrimination of non-specific interactions. Here we present a DNA-based Molecular Force Assay to quantify protein-protein interactions, namely the bond between different variants of GFP and GFP-binding nanobodies. We present different strategies to adjust the maximum sensitivity window of the assay by influencing the binding strength of the DNA reference duplexes. The binding of the nanobody Enhancer to the different GFP constructs is compared at high sensitivity of the assay. Whereas the binding strength to wild type and enhanced GFP are equal within experimental error, stronger binding to superfolder GFP is observed. This difference in binding strength is attributed to alterations in the amino acids that form contacts according to the crystal structure of the initial wild type GFP-Enhancer complex. Moreover, we outline the potential for large-scale parallelization of the assay.  相似文献   
942.
Prosocial behaviours such as helping, comforting, or sharing are central to human social life. Because they emerge early in ontogeny, it has been proposed that humans are prosocial by nature and that from early on empathy and sympathy motivate such behaviours. The emerging question is whether humans share these abilities to feel with and for someone with our closest relatives, the great apes. Although several studies demonstrated that great apes help others, little is known about their underlying motivations. This study addresses this issue and investigates whether four species of great apes (Pongo pygmaeus, Gorilla gorilla, Pan troglodytes, Pan paniscus) help a conspecific more after observing the conspecific being harmed (a human experimenter steals the conspecific’s food) compared to a condition where no harming occurred. Results showed that in regard to the occurrence of prosocial behaviours, only orangutans, but not the African great apes, help others when help is needed, contrasting prior findings on chimpanzees. However, with the exception of one population of orangutans that helped significantly more after a conspecific was harmed than when no harm occurred, prosocial behaviour in great apes was not motivated by concern for others.  相似文献   
943.

Background and Purpose

Both cerebral hypoperfusion and vascular risk factors have been implicated in early aging of the brain and the development of neurodegenerative disease. However, the current knowledge of the importance of cardiovascular health on resting brain perfusion is limited. The aim of the present study was to elucidate the relation between brain perfusion variability and risk factors of endothelial dysfunction and atherosclerosis in healthy aged subjects.

Methods

Thirty-eight healthy subjects aged 50–75 years old were included. Mean global brain perfusion was measured using magnetic resonance phase contrast mapping and regional brain perfusion by use of arterial spin labeling.

Results

Mean global brain perfusion was inversely correlated with caffeine and hematocrit, and positively with end-tidal PCO2. Furthermore, the mean global brain perfusion was inversely correlated with circulating homocysteine, but not with asymmetric dimethylarginine, dyslipidemia or the carotid intima-media thickness. The relative regional brain perfusion was associated with circulating homocysteine, with a relative parietal hypoperfusion and a frontal hyperperfusion. No effect on regional brain perfusion was observed for any of the other risk factors. A multiple regression model including homocysteine, caffeine, hematocrit and end-tidal PCO2, explained nearly half of the observed variability.

Conclusion

Both intrinsic and extrinsic factors influenced global cerebral perfusion variation between subjects. Further, the results suggest that the inverse relation between homocysteine and brain perfusion is owing to other mechanisms, than reflected by asymmetric dimethylarginine, and that homocysteine may be a marker of cerebral perfusion in aging brains.  相似文献   
944.
The grounded cognition framework proposes that sensorimotor brain areas, which are typically involved in perception and action, also play a role in linguistic processing. We assessed oscillatory modulation during visual presentation of single verbs and localized cortical motor regions by means of isometric contraction of hand and foot muscles. Analogously to oscillatory activation patterns accompanying voluntary movements, we expected a somatotopically distributed suppression of beta and alpha frequencies in the motor cortex during processing of body-related action verbs. Magnetoencephalographic data were collected during presentation of verbs that express actions performed using the hands (H) or feet (F). Verbs denoting no bodily movement (N) were used as a control. Between 150 and 500 msec after visual word onset, beta rhythms were suppressed in H and F in comparison with N in the left hemisphere. Similarly, alpha oscillations showed left-lateralized power suppression in the H-N contrast, although at a later stage. The cortical oscillatory activity that typically occurs during voluntary movements is therefore found to somatotopically accompany the processing of body-related verbs. The combination of a localizer task with the oscillatory investigation applied to verb reading as in the present study provides further methodological possibilities of tracking language processing in the brain.  相似文献   
945.
946.
Essentially all biological processes depend on protein–protein interactions (PPIs). Timing of such interactions is crucial for regulatory function. Although circadian (∼24-hour) clocks constitute fundamental cellular timing mechanisms regulating important physiological processes, PPI dynamics on this timescale are largely unknown. Here, we identified 109 novel PPIs among circadian clock proteins via a yeast-two-hybrid approach. Among them, the interaction of protein phosphatase 1 and CLOCK/BMAL1 was found to result in BMAL1 destabilization. We constructed a dynamic circadian PPI network predicting the PPI timing using circadian expression data. Systematic circadian phenotyping (RNAi and overexpression) suggests a crucial role for components involved in dynamic interactions. Systems analysis of a global dynamic network in liver revealed that interacting proteins are expressed at similar times likely to restrict regulatory interactions to specific phases. Moreover, we predict that circadian PPIs dynamically connect many important cellular processes (signal transduction, cell cycle, etc.) contributing to temporal organization of cellular physiology in an unprecedented manner.  相似文献   
947.
948.
Triploid (3N) salmonids are of interest to aquaculture and sport fishing industries, however it has been shown that 3N fish have impaired tolerance to high temperatures. To test the hypothesis that poor high temperature tolerance in 3N salmonids is related to impaired O2 delivery to the body, maximum heart rate (fH) was measured in 2N (diploid) and 3N rainbow trout (Oncorhynchus mykiss) during an incremental temperature challenge. fH of both ploidies was similar at 10 °C. However, a significant effect of ploidy on the response of fH to temperature from 10 to 22 °C was reflected in a lower Q10 for 3N individuals. Additionally, all 3N trout developed a cardiac arrhythmia by 22 °C, where 30% of 2N trout continued to maintain a rhythmic heartbeat. These findings suggest that reduced 3N high temperature tolerance could be due to early collapse of the cardiovascular system's ability to deliver O2 to the body during warming.  相似文献   
949.

Background

Candida albicans is a ubiquitous opportunistic fungal pathogen that afflicts immunocompromised human hosts. With rare and transient exceptions the yeast is diploid, yet despite its clinical relevance the respective sequences of its two homologous chromosomes have not been completely resolved.

Results

We construct a phased diploid genome assembly by deep sequencing a standard laboratory wild-type strain and a panel of strains homozygous for particular chromosomes. The assembly has 700-fold coverage on average, allowing extensive revision and expansion of the number of known SNPs and indels. This phased genome significantly enhances the sensitivity and specificity of allele-specific expression measurements by enabling pooling and cross-validation of signal across multiple polymorphic sites. Additionally, the diploid assembly reveals pervasive and unexpected patterns in allelic differences between homologous chromosomes. Firstly, we see striking clustering of indels, concentrated primarily in the repeat sequences in promoters. Secondly, both indels and their repeat-sequence substrate are enriched near replication origins. Finally, we reveal an intimate link between repeat sequences and indels, which argues that repeat length is under selective pressure for most eukaryotes. This connection is described by a concise one-parameter model that explains repeat-sequence abundance in C. albicans as a function of the indel rate, and provides a general framework to interpret repeat abundance in species ranging from bacteria to humans.

Conclusions

The phased genome assembly and insights into repeat plasticity will be valuable for better understanding allele-specific phenomena and genome evolution.  相似文献   
950.

Trace elements have important functions in several processes involved in cellular homeostasis and survival. Dysfunctional metal ion homeostasis can make an important impact on cellular defence mechanisms. We assessed the concentrations of 23 trace minerals in different tissues (brain, spleen, heart and liver) of Fmr1 knockout (KO) mice that display the main phenotype of Fragile X syndrome (FXS), an intellectual disability syndrome and the best-known monogenic model of autism spectrum disorder (ASD). Altogether, seven minerals—Cu, Fe, K, Mg, Mn, Na, and P—were above the detection limit with the analysis revealing increased iron content in the heart of Fmr1 KO mice. In addition, levels of iron were higher in the cerebellum of the transgenic mouse when compared to wild type controls. These results implicate a role for dysregulated iron homeostasis in FXS tissues and suggest that defective iron-related mechanisms contribute to increased tissue vulnerability in FXS.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号