首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2834篇
  免费   240篇
  2023年   12篇
  2022年   36篇
  2021年   51篇
  2020年   33篇
  2019年   41篇
  2018年   65篇
  2017年   38篇
  2016年   88篇
  2015年   149篇
  2014年   173篇
  2013年   188篇
  2012年   250篇
  2011年   236篇
  2010年   127篇
  2009年   129篇
  2008年   191篇
  2007年   181篇
  2006年   145篇
  2005年   148篇
  2004年   118篇
  2003年   109篇
  2002年   98篇
  2001年   36篇
  2000年   27篇
  1999年   39篇
  1998年   25篇
  1997年   24篇
  1996年   11篇
  1995年   13篇
  1994年   9篇
  1992年   16篇
  1991年   12篇
  1990年   12篇
  1989年   16篇
  1988年   11篇
  1987年   17篇
  1986年   13篇
  1985年   14篇
  1984年   15篇
  1983年   19篇
  1982年   13篇
  1981年   9篇
  1980年   14篇
  1979年   12篇
  1978年   12篇
  1976年   6篇
  1975年   8篇
  1973年   7篇
  1972年   7篇
  1971年   7篇
排序方式: 共有3074条查询结果,搜索用时 15 毫秒
121.
Chromosomes segregate using their kinetochores, the specialized protein structures that are assembled on centromeric DNA and mediate attachment to the mitotic spindle. Because centromeric sequences are not conserved, centromere identity is propagated by an epigenetic mechanism. All eukaryotes contain an essential histone H3 variant (CenH3) that localizes exclusively to centromeres. Because CenH3 is required for kinetochore assembly and is likely to be the epigenetic mark that specifies centromere identity, it is critical to elucidate the mechanisms that assemble and maintain CenH3 exclusively at centromeres. To learn more about the functions and regulation of CenH3, we isolated mutants in the budding yeast CenH3 that are lethal when overexpressed. These CenH3 mutants fall into three unique classes: (I) those that localize to euchromatin but do not alter kinetochore function, (II) those that localize to the centromere and disrupt kinetochore function, and (III) those that no longer target to the centromere but still disrupt chromosome segregation. We found that a class III mutant is specifically defective in the ability of sister kinetochores to biorient and attach to microtubules from opposite spindle poles, indicating that CenH3 mutants defective in kinetochore biorientation can be obtained.  相似文献   
122.
123.
Cirrhotic cardiomyopathy is the term used to describe a constellation of features indicative of abnormal heart structure and function in patients with cirrhosis. These include systolic and diastolic dysfunction, electrophysiological changes, and macroscopic and microscopic structural changes. The prevalence of cirrhotic cardiomyopathy remains unknown at present, mostly because the disease is generally latent and shows itself when the patient is subjected to stress such as exercise, drugs, hemorrhage and surgery. The main clinical features of cirrhotic cardiomyopathy include baseline increased cardiac output, attenuated systolic contraction or diastolic relaxation in response to physiologic, pharmacologic and surgical stress, and electrical conductance abnormalities (prolonged QT interval). In the majority of cases, diastolic dysfunction precedes systolic dysfunction, which tends to manifest only under conditions of stress. Generally, cirrhotic cardiomyopathy with overt severe heart failure is rare. Major stresses on the cardiovascular system such as liver transplantation, infections and insertion of transjugular intrahepatic portosystemic stent-shunts (TIPS) can unmask the presence of cirrhotic cardiomyopathy and thereby convert latent to overt heart failure. Cirrhotic cardiomyopathy may also contribute to the pathogenesis of hepatorenal syndrome. Pathogenic mechanisms of cirrhotic cardiomyopathy are multiple and include abnormal membrane biophysical characteristics, impaired β-adrenergic receptor signal transduction and increased activity of negative-inotropic pathways mediated by cGMP. Diagnosis and differential diagnosis require a careful assessment of patient history probing for excessive alcohol, physical examination for signs of hypertension such as retinal vascular changes, and appropriate diagnostic tests such as exercise stress electrocardiography, nuclear heart scans and coronary angiography. Current management recommendations include empirical, nonspecific and mainly supportive measures. The exact prognosis remains unclear. The extent of cirrhotic cardiomyopathy generally correlates to the degree of liver insufficiency. Reversibility is possible (either pharmacological or after liver transplantation), but further studies are needed.  相似文献   
124.
We describe a statistical measure, Mass Distance Fingerprint, for automatic de novo detection of predominant peptide mass distances, i.e., putative protein modifications. The method's focus is to globally detect mass differences, not to assign peptide sequences or modifications to individual spectra. The Mass Distance Fingerprint is calculated from high accuracy measured peptide masses. For the data sets used in this study, known mass differences are detected at electron mass accuracy or better. The proposed method is novel because it works independently of protein sequence databases and without any prior knowledge about modifications. Both modified and unmodified peptides have to be present in the sample to be detected. The method can be used for automated detection of chemical/post-translational modifications, quality control of experiments and labeling approaches, and to control the modification settings of protein identification tools. The algorithm is implemented as a web application and is distributed as open source software.  相似文献   
125.
We present and evaluate a strategy for the mass spectrometric identification of proteins from organisms for which no genome sequence information is available that incorporates cross-species information from sequenced organisms. The presented method combines spectrum quality scoring, de novo sequencing and error tolerant BLAST searches and is designed to decrease input data complexity. Spectral quality scoring reduces the number of investigated mass spectra without a loss of information. Stringent quality-based selection and the combination of different de novo sequencing methods substantially increase the catalog of significant peptide alignments. The de novo sequences passing a reliability filter are subsequently submitted to error tolerant BLAST searches and MS-BLAST hits are validated by a sampling technique. With the described workflow, we identified up to 20% more groups of homologous proteins in proteome analyses with organisms whose genome is not sequenced than by state-of-the-art database searches in an Arabidopsis thaliana database. We consider the novel data analysis workflow an excellent screening method to identify those proteins that evade detection in proteomics experiments as a result of database constraints.  相似文献   
126.
The types of cell-matrix adhesions and the signals they transduce strongly affect the cell-phenotype. We hypothesized that cells sense and respond to the three-dimensionality of their environment, which could be modulated by nano-structures on silicon surfaces. Human foreskin fibroblasts were cultured on nano-structures with different patterns (nano-post and nano-grate) and heights for 3 days. The presence of integrin alpha(5), beta(1), beta(3), paxillin and phosphorylated FAK (pFAK) were detected by western blot and immunofluorescence. Integrin beta(3) exhibited stronger signals on nano-grates. pFAK and paxillin were observed as small dot-like patterns on the cell-periphery on nano-posts and as elongated and aligned patterns on nano-grates. Collectively, our observations highlighted the presence of focal (integrin beta(1), beta(3), pFAK, paxillin), fibrillar (integrin alpha(5), beta(1)) and 3-D matrix (integrin alpha(5), beta(1), paxillin) adhesions on nano-structures. The presented nano-structures offer interesting opportunities to study the interaction of cells with topographical features comparable to the size of extracellular matrix components.  相似文献   
127.
Of the >40 alternative and aberrant splice variants of MDM2 that have been described to date, the majority has lost both the well-characterized nuclear localization signal (NLS1) and the nuclear export signal (NES) sequence. Because cellular localization of proteins provides insight regarding their potential function, we determined the localization of three different MDM2 splice variants. The splice variants chosen were the common variants MDM2-A and MDM2-B. In addition, MDM2-FB26 was chosen because it is one of the few variants described that contains the complete p53-binding site. All three splice variants predominantly localized to the nucleus. Nuclear localization of MDM2-A and MDM2-B was controlled by a previously uncharacterized nuclear localization signal (NLS2), whereas nucleoplasmic localization of MDM2-FB26 was mediated by NLS1. p53 and full-length MDM2 colocalized with the splice variants in the nucleus. MDM2-A and MDM2-B both contain a COOH-terminal RING finger domain, and interaction with full-length MDM2 through this domain was confirmed. MDM2-FB26 was the only splice variant evaluated that contained a p53-binding domain; however, interaction between MDM2-FB26 and p53 could not be shown. p14(ARF) did not colocalize with the splice variants and was predominantly expressed within the nucleoli. In summary, nuclear localization signals responsible for the nucleoplasmic distribution of MDM2 splice variants have been characterized. Colocalization and interaction of MDM2-A and MDM2-B with full-length MDM2 in the nucleus have important physiologic consequences, for example, deregulation of p53 activity.  相似文献   
128.
129.
DNA intercalators bind nucleic acids by stacking between adjacent basepairs. This causes a considerable elongation of the DNA backbone as well as untwisting of the double helix. In the past few years, single-molecule mechanical experiments have become a common tool to characterize these deformations and to quantify important parameters of the intercalation process. Parameter extraction typically relies on the neighbor-exclusion model, in which a bound intercalator prevents intercalation into adjacent sites. Here, we challenge the neighbor-exclusion model by carefully quantifying and modeling the force-extension and twisting behavior of single ethidium-complexed DNA molecules. We show that only an anticooperative ethidium binding that allows for a disfavored but nonetheless possible intercalation into nearest-neighbor sites can consistently describe the mechanical behavior of intercalator-bound DNA. At high ethidium concentrations and elevated mechanical stress, this causes an almost complete occupation of nearest-neighbor sites and almost a doubling of the DNA contour length. We furthermore show that intercalation into nearest-neighbor sites needs to be considered when estimating intercalator parameters from zero-stress elongation and twisting data. We think that the proposed anticooperative binding mechanism may also be applicable to other intercalating molecules.  相似文献   
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号