首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   340篇
  免费   18篇
  国内免费   9篇
  2022年   4篇
  2021年   2篇
  2016年   2篇
  2015年   6篇
  2014年   9篇
  2013年   15篇
  2012年   10篇
  2011年   28篇
  2010年   8篇
  2009年   6篇
  2008年   11篇
  2007年   15篇
  2006年   10篇
  2005年   10篇
  2004年   11篇
  2003年   9篇
  2002年   4篇
  2001年   11篇
  2000年   9篇
  1999年   5篇
  1998年   5篇
  1997年   2篇
  1995年   7篇
  1993年   2篇
  1992年   8篇
  1991年   14篇
  1990年   7篇
  1989年   9篇
  1988年   10篇
  1987年   15篇
  1986年   11篇
  1985年   13篇
  1984年   8篇
  1983年   3篇
  1982年   6篇
  1981年   13篇
  1980年   7篇
  1979年   5篇
  1978年   7篇
  1977年   6篇
  1976年   4篇
  1974年   2篇
  1971年   1篇
  1970年   3篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
  1957年   3篇
  1955年   1篇
  1953年   1篇
排序方式: 共有367条查询结果,搜索用时 31 毫秒
321.
To define the enzymes involved in the etiology of Alzheimer's disease, we compared in mouse and human brain the mRNA levels and cellular localization of the ubiquitous beta-amyloid precursor protein (beta-APP) with those of the putative alpha-secretases ADAM10 and ADAM17 and the beta-secretases BACE and BACE2. In situ hybridization performed in mice during prenatal and postnatal development and in adulthood revealed the coexpression of beta-APP, BACE, and ADAM10. The patterns of BACE2 and ADAM17 only partially overlapped with that of beta-APP. beta-APP, BACE, and ADAM10 mRNAs have also been detected by northern blot in human brain cortex of normal subjects and in Alzheimer's disease subjects. In situ hybridization performed using combined biotin- and radiolabeled riboprobes provided evidence for the coexpression of beta-APP with BACE and ADAM10 in human cortical neurons. Our data provide cytochemical evidence supporting the role of ADAM10 and BACE as authentic alpha- and beta-secretases.  相似文献   
322.
Mammalian proprotein convertases (PCs) belong to the family of recently discovered serine proteases responsible for the processing of a large number of precursor proteins into their active forms. The enzymatic activities of the convertases have been implicated in a variety of disease states, such as cancer and infectious and inflammatory diseases. Like many other proteases, PCs are also synthesized as inactive proenzymes with N-terminal extensions as their prosegments. Here, we present the inhibitory activities of a number of "putative" interfacial peptide fragments derived from the proregion of PC7. We found that a peptide fragment corresponding to the C-terminal region (residues 81p-104p, or C24: E(1)-A-V-L-A-K-H-E-A-V-R-W-H-S-E-Q-R-L-L-K-R-A-K-R(24)) of the PC7 prosegment displays a strong inhibition (K(i) = 7 nM) of the PC7 enzyme comparable to that of the full-length (104 residue) prosegment. The same 24 residue peptide shows significantly populated helical conformations in an aqueous solution close to the physiological condition. Structure calculations driven by NOE distance restraints revealed a slightly kinked helical conformation for the entire peptide, characterized by many side-chain/side-chain interactions including those involving charged residues E8-R11-E15 and hydrophobic residues W12 and L19. These results suggest that the C-terminal region of the prosegment of PC7 may play a dominant role in conferring the inhibitory potency to the cognate enzyme and this strong inhibitory activity may be a direct consequence of the folded conformation of the peptide fragment in solution. We surmise that such a structure-function correlation for an inhibitory peptide could lead to the design and discovery of molecules mimicking the specific interactions of the PC prosegments for their cognate proteases.  相似文献   
323.
Processing of the beta-amyloid precursor protein (betaAPP) by beta- and gamma-secretases generates the amyloidogenic peptide Abeta, a major factor in the etiology of Alzheimer's disease. Following the recent identification of the beta-secretase beta-amyloid-converting enzyme (BACE), we herein investigate its zymogen processing, molecular properties, and cellular trafficking. Our data show that among the proprotein convertase family members, furin is the major converting enzyme of pro-BACE into BACE within the trans-Golgi network of HK293 cells. While we demonstrate that the 24-amino acid prosegment is required for the efficient exit of pro-BACE from the endoplasmic reticulum, it may not play a strong inhibitory role since we observe that pro-BACE can produce significant quantities of the Swedish mutant betaAPP(sw) beta-secretase product C99. BACE is palmitoylated at three Cys residues within its transmembrane/cytosolic tail and is sulfated at mature N-glycosylated moieties. Data with three different antibodies show that a small fraction of membrane-bound BACE is shed into the medium and that the extent of ectodomain shedding is palmitoylation-dependent. Overexpression of full-length BACE causes a significant increase in the production of C99 and a decrease in the alpha-secretase product APPsalpha. Although there is little increase in the generation of Abeta by full-length BACE, overexpression of either a soluble form of BACE (equivalent to the shed form) or one lacking the prosegment leads to enhanced Abeta levels. These findings suggest that the shedding of BACE may play a role in the amyloidogenic processing of betaAPP.  相似文献   
324.
PC1 and PC2 (prohormone convertase) represent neuroendocrine members of the mammalian subtilisin-like family of proprotein convertases. The goal of this study was to compare the primary sequence motifs of bovine PC1 and PC2 with those of homologs from other mammalian species to establish the structural basis for PC1 and PC2 activities in bovine that resemble other mammalian homologs. Molecular cloning from bovine adrenal medulla resulted in the isolation of cDNAs for bovine PC1 and PC2 with highly conserved primary sequences with respect to signal sequence, prosegment, catalytic domain, and P domain. Bovine PC1 and PC2 contained the catalytic triad residues Asp, His, Ser, which are identical to the triads in PC1 and PC2 from other mammalian species. Bovine PCl contained Asn as the oxyanion hole residue; in contrast, bovine PC2 contained Asp as the oxyanion hole residue, which is identical to PC2 in other mammalian species. Bovine PC1 and PC2 possessed the P domain that contains the functional RRGDL motif. The cloned cDNAs detected expression of PC1 and PC2 mRNAs in bovine adrenal medulla. These results establish the defined structural domains of bovine PC1 and PC2 that are known to be essential for the activities of these enzymes in various species.  相似文献   
325.
Proprotein convertase subtilisin/kexin-9 (PCSK9) enhances the degradation of hepatic low-density lipoprotein receptor (LDLR). Deletion of PCSK9, and loss-of-function mutants in humans result in lower levels of circulating LDL-cholesterol and a strong protection against coronary heart disease. Accordingly, the quest for PCSK9 inhibitors has major clinical implications. We have previously identified annexin A2 (AnxA2) as an endogenous binding partner and functional inhibitor of PCSK9. Herein, we studied the relevance of AnxA2 in PCSK9 inhibition and lipid metabolism in vivo. Plasma analyses of AnxA2(-/-) mice revealed: i) a ~1.4-fold increase in LDL-cholesterol without significant changes in VLDLs or HDLs, and ii) a ~2-fold increase in circulating PCSK9 levels. Western blotting and immunohistochemistry of AnxA2(-/-) tissues revealed that the LDLR was decreased by ~50% in extrahepatic tissues, such as adrenals and colon. We also show that AnxA2-derived synthetic peptides block the PCSK9≡LDLR interaction in vitro, and adenoviral overexpression of AnxA2 in mouse liver increases LDLR protein levels in vivo. These results suggest that AnxA2 acts as an endogenous regulator of LDLR degradation, mostly in extrahepatic tissues. Finally, we identified an AnxA2 coding polymorphism, V98L, that correlates with lower circulating levels of PCSK9 thereby extending our results on the physiological role of AnxA2 in humans.  相似文献   
326.
Elevated levels of plasma low density lipoprotein (LDL)-cholesterol, leading to familial hypercholesterolemia, are enhanced by mutations in at least three major genes, the LDL receptor (LDLR), its ligand apolipoprotein B, and the proprotein convertase PCSK9. Single point mutations in PCSK9 are associated with either hyper- or hypocholesterolemia. Accordingly, PCSK9 is an attractive target for treatment of dyslipidemia. PCSK9 binds the epidermal growth factor domain A (EGF-A) of the LDLR and directs it to endosomes/lysosomes for destruction. Although the mechanism by which PCSK9 regulates LDLR degradation is not fully resolved, it seems to involve both intracellular and extracellular pathways. Here, we show that clathrin light chain small interfering RNAs that block intracellular trafficking from the trans-Golgi network to lysosomes rapidly increased LDLR levels within HepG2 cells in a PCSK9-dependent fashion without affecting the ability of exogenous PCSK9 to enhance LDLR degradation. In contrast, blocking the extracellular LDLR endocytosis/degradation pathway by a 4-, 6-, or 24-h incubation of cells with Dynasore or an EGF-AB peptide or by knockdown of endogenous autosomal recessive hypercholesterolemia did not significantly affect LDLR levels. The present data from HepG2 cells and mouse primary hepatocytes favor a model whereby depending on the dose and/or incubation period, endogenous PCSK9 enhances the degradation of the LDLR both extra- and intracellularly. Therefore, targeting either pathway, or both, would be an effective method to reduce PCSK9 activity in the treatment of hypercholesterolemia and coronary heart disease.High levels of circulating low-density lipoprotein (LDL)3-cholesterol represent a major risk factor that leads to coronary heart disease, the main cause of death and morbidity worldwide (1). LDL particles are cleared mainly from the bloodstream by the hepatic cell surface LDL receptor (LDLR) (2). Genetics studies demonstrated that loss-of-function mutations in either LDLR or apolipoprotein B, the protein component of LDL that binds LDLR, result in familial hypercholesterolemia and premature coronary heart disease (3). More recently, the proprotein convertases subtilisin kexin 9 (PCSK9) gene (4), which is highly expressed in liver and small intestine (5), was identified as the third locus associated with familial hypercholesterolemia (6). It is now clear that PCSK9 binds the LDLR and triggers its intracellular degradation in acidic compartments, resulting in increased circulating plasma cholesterol (710).After its autocatalytic cleavage, PCSK9 is secreted as a stable noncovalent complex with its prosegment (pro·PCSK9) (5, 7). This cleavage results in a conformational change (11) that favors the binding of PCSK9 to the epidermal growth factor A domain (EGF-A) of the LDLR (12), with increased affinity at acidic pH values (11). Although the C-terminal Cys-His-rich domain of PCSK9 is a spatially separate domain (11) that does not participate directly in the PCSK9-EGF-A interaction (12), it is a critical determinant for the PCSK9-enhanced cellular degradation of the LDLR (13). In agreement, we recently demonstrated that annexin A2, which binds the Cys-His-rich domain of PCSK9, blocks its effect on LDLR degradation (14).Overexpression studies in liver suggested that both intra- and extracellular PCSK9 target the LDLR (9, 15, 16) toward degradation in late endosomes/lysosomes (LE/L) (710). It was shown that the adaptor protein ARH, which interacts with the cytosolic tail of the LDLR, is essential for the endocytosis and degradation of the cell surface PCSK9·LDLR complex in vivo (16). However, hepatic LDLR protein levels were also reduced upon overexpression of PCSK9 in Arh −/− mice (9), suggesting the presence of an ARH-independent intracellular pathway. Intriguingly, at endogenous levels of PCSK9, the absence of ARH did not affect hepatic LDLR subcellular localization in LE/L or protein levels (17). This is not the expected result if PCSK9 mostly targets LDLR by the extracellular pathway (18), as one would have expected that in Arh−/− mice total LDLR levels should have been more elevated.In this study, we focused on the relative contribution of the intra- versus extracellular pathways of endogenous PCSK9-induced LDLR degradation. This information should guide the choice of therapeutic approaches that will best target the site of PCSK9-LDLR interaction to control hypercholesterolemia and coronary heart disease.  相似文献   
327.
328.
Correlations between phenotypic traits are common in many organisms, but the relative importance of nonadaptive mechanisms and selection for the evolution and maintenance of such correlations are poorly understood. In polymorphic species, morphs may evolve quantitative differences in additional characters as a result of morph‐specific selection. The perennial rosette herb Primula farinosa is polymorphic for scape length. The short‐scaped morph is less damaged by grazers and seed predators but is more strongly pollen limited than the long‐scaped morph. We examined whether morph‐specific differences in biotic interactions are associated with differences in selection on two other traits affecting floral display (number of flowers and petal size) and on one trait likely to affect pollination efficiency (corolla tube width) in three P. farinosa populations. Differences in selection between morphs were detected in one population. In this population, selection for more flowers and larger petals was stronger in the short‐scaped than in the long‐scaped morph, and although there was selection for narrower corolla tubes in the short‐scaped morph, no statistically significant selection on corolla tube width could be detected in the long‐scaped morph. In the study populations, the short‐scaped morph produced more and larger flowers and wider corolla tubes. Current morph‐specific selection was thus only partly consistent with trait differences between morphs. The results provide evidence of morph‐specific selection on traits associated with floral display and pollination efficiency, respectively.  相似文献   
329.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a major role in cholesterol homeostasis through enhanced degradation of the LDL receptor (LDLR) in liver. As novel inhibitors/silencers of PCSK9 are now being tested in clinical trials to treat hypercholesterolemia, it is crucial to define the physiological consequences of the lack of PCSK9 in various organs. LDLR regulation by PCSK9 has not been extensively described during mouse brain development and injury. Herein, we show that PCSK9 and LDLR are co-expressed in mouse brain during development and at adulthood. Although the protein levels of LDLR and apolipoprotein E (apoE) in the adult brain of Pcsk9(-/-) mice are similar to those of wild-type (WT) mice, LDLR levels increased and were accompanied by a reduction of apoE levels during development. This suggests that the upregulation of LDLR protein levels in Pcsk9(-/-) mice enhances apoE degradation. Upon ischemic stroke, PCSK9 was expressed in the dentate gyrus between 24 h and 72 h following brain reperfusion. Although mouse behavior and lesion volume were similar, LDLR protein levels dropped ~2-fold less in the Pcsk9(-/-)-lesioned hippocampus, without affecting apoE levels and neurogenesis. Thus, PCSK9 downregulates LDLR levels during brain development and following transient ischemic stroke in adult mice.  相似文献   
330.
During the course of reverse-phase high pressure liquid chromatography (RP-HPLC) purification of a postulated big ACTH (1) from human pituitary gland extracts, a highly purified peptide bearing no resemblance to any known polypeptide was isolated. The complete sequence of this 74 amino acid polypeptide, called GAWK, has been determined. Search on a computer data bank on the possible homology to any known protein or fragment, using a mutation data matrix, failed to reveal any homology greater than 30%. An antibody produced against a synthetic fragment allowed us to detect several immunoreactive forms. The antisera also enabled us to localize the polypeptide, by immunocytochemistry, in the anterior lobe of the pituitary gland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号