首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   8篇
  158篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   3篇
  2013年   7篇
  2012年   10篇
  2011年   14篇
  2010年   7篇
  2009年   6篇
  2008年   12篇
  2007年   10篇
  2006年   13篇
  2005年   7篇
  2004年   3篇
  2003年   6篇
  2001年   2篇
  2000年   3篇
  1999年   9篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1985年   1篇
  1979年   3篇
  1978年   5篇
  1977年   2篇
  1975年   2篇
  1970年   2篇
  1960年   1篇
排序方式: 共有158条查询结果,搜索用时 0 毫秒
101.
Fungal hydrophobins have potential for several applications because of their abilities to change the hydrophobicity of different surfaces. Yet because of their tendency for aggregation and attachment to interfacial areas only few production processes have so far been reported. Towards the development of a heterologous production system, we report here the expression of a class I hydrophobin DewA of Aspergillus nidulans in Hypocrea jecorina (Trichoderma reesei). Using the H. jecorina hfb2 (class II hydrophobin-encoding) promoter and lactose as a carbon source, only a minor fraction of the DewA remained cell-wall-bound and the majority of it secreted into the medium with up to 15% of the total secreted protein. N-terminal amino acid sequencing showed that it was correctly processed. In contrast, no DewA was produced under the cel7A (cellobiohydrolase I) promoter, although its mRNA was abundantly detected in the cells. This lack of secretion is not due to trapping in the cell wall or to its degradation because of the unfolded protein response. Recombinant DewA could be conveniently precipitated from the culture filtrate, and its bioactivity proven by its ability to stably bind to hydrophilic and hydrophobic surfaces (glass and Teflon, respectively). We thus consider H. jecorina as a promising host for further optimization of DewA production.  相似文献   
102.
Eukaryotic cells devoid of mitochondrial DNA (ρ0 cells) were originally generated under artificial growth conditions utilizing ethidium bromide. The chemical is known to intercalate preferentially with the mitochondrial double-stranded DNA thereby interfering with enzymes of the replication machinery. ρ0 cell lines are highly valuable tools to study human mitochondrial disorders because they can be utilized in cytoplasmic transfer experiments. However, mutagenic effects of ethidium bromide onto the nuclear DNA cannot be excluded. To foreclose this mutagenic character during the development of ρ0 cell lines, we developed an extremely mild, reliable and timesaving method to generate ρ0 cell lines within 3–5 days based on an enzymatic approach. Utilizing the genes for the restriction endonuclease EcoRI and the fluorescent protein EGFP that were fused to a mitochondrial targeting sequence, we developed a CMV-driven expression vector that allowed the temporal expression of the resulting fusion enzyme in eukaryotic cells. Applied on the human cell line 143B.TK the active protein localized to mitochondria and induced the complete destruction of endogenous mtDNA. Mouse and rat ρ0 cell lines were also successfully created with this approach. Furthermore, the newly established 143B.TK ρ0 cell line was characterized in great detail thereby releasing interesting insights into the morphology and ultra structure of human ρ0 mitochondria.  相似文献   
103.
Ever increasing evidence has been provided on the accumulation of mutations in the mitochondrial DNA (mtDNA) during the aging process. However, the lack of direct functional consequences of the mutant mtDNA load on the mitochondria-dependent cell metabolism has raised many questions on the physiological importance of the age-related mtDNA variations. In the present work, we have analyzed the bioenergetic properties associated with the age-related T414G mutation of the mtDNA control region in transmitochondrial cybrids. The results show that the T414G mutation does not cause per se any detectable bioenergetic change. Moreover, three mtDNA mutations clustered in the 16S ribosomal RNA gene cosegregated together with the T414G in the same cybrid cell line. Two of them, namely T1843C and A1940G, are novel and associate with a negative bioenergetic phenotype. The results are discussed in the more general context of the complex heterogeneity and the dramatic instability of the mitochondrial genome during cell culture of transmitochondrial cybrids.  相似文献   
104.
105.
Hu-K4 is a human protein homologous to the K4L protein of vaccinia virus. Due to the presence of two HKD motifs, Hu-K4 was assigned to the family of Phospholipase D proteins although so far no catalytic activity has been shown. The Hu-K4 mRNA is found in many human organs with highest expression levels in the central nervous system. We extended the ORF of Hu-K4 to the 5' direction. As a consequence the protein is 53 amino acids larger than originally predicted, now harbouring a putative transmembrane domain. The exon/intron structure of the Hu-K4 gene reveals extensive alternative splicing in the 5' untranslated region. Due to the absence of G/C-rich regions and upstream ATG codons, the mRNA isoform in brain may be translated with higher efficacy leading to a high Hu-K4 protein concentration in this tissue. Using a specific antiserum produced against Hu-K4 we found that Hu-K4 is a membrane-bound protein colocalizing with protein disulfide isomerase, a marker of the endoplasmic reticulum. Glycosylation of Hu-K4 as shown by treatment with peptide N-glycosidase F or tunicamycin indicates that Hu-K4 has a type 2 transmembrane topology.  相似文献   
106.
A novel levansucrase was identified in the supernatant of a cell culture of Bacillus megaterium DSM319. In order to test for the contribution of specific amino acid residues to levansucrase catalysis, the wild-type enzyme along with 16 variants based on sequence alignments and structural information were heterologously produced in Escherichia coli. The purified enzymes were characterized kinetically and the product spectrum of each variant was determined. Comparison of the X-ray structures of the levansucrases from Gram-positive Bacillus subtilis and Gram-negative Gluconacetobacter diazotrophicus in conjunction with the corresponding product spectra identified crucial amino acid residues responsible for product specificity and catalysis. Highly conserved regions such as the previously described RDP and DXXER motifs were identified as being important. Two crucial structural differences localized at amino acid residues Arg370 and Asn252 were of high relevance in polymer compared with oligosaccharide synthesis.  相似文献   
107.

Introduction

The relative resistance of non-chondrodystrophic (NCD) canines to degenerative disc disease (DDD) may be due to a combination of anabolic and anti-catabolic factors secreted by notochordal cells within the intervertebral disc (IVD) nucleus pulposus (NP). Factors known to induce DDD include interleukin-1 beta (IL-1ß) and/or Fas-Ligand (Fas-L). Therefore we evaluated the ability of notochordal cell conditioned medium (NCCM) to protect NP cells from IL-1ß and IL-1ß +FasL-mediated cell death and degeneration.

Methods

We cultured bovine NP cells with IL-1ß or IL-1ß+FasL under hypoxic serum-free conditions (3.5% O2) and treated the cells with either serum-free NCCM or basal medium (Advanced DMEM/F-12). We used flow cytometry to evaluate cell death and real-time (RT-)PCR to determine the gene expression of aggrecan, collagen 2, and link protein, mediators of matrix degradation ADAMTS-4 and MMP3, the matrix protection molecule TIMP1, the cluster of differentiation (CD)44 receptor, the inflammatory cytokine IL-6 and Ank. We then determined the expression of specific apoptotic pathways in bovine NP cells by characterizing the expression of activated caspases-3, -8 and -9 in the presence of IL-1ß+FasL when cultured with NCCM, conditioned medium obtained using bovine NP cells (BCCM), and basal medium all supplemented with 2% FBS.

Results

NCCM inhibits bovine NP cell death and apoptosis via suppression of activated caspase-9 and caspase-3/7. Furthermore, NCCM protects NP cells from the degradative effects of IL-1ß and IL-1ß+Fas-L by up-regulating the expression of anabolic/matrix protective genes (aggrecan, collagen type 2, CD44, link protein and TIMP-1) and down-regulating matrix degrading genes such as MMP-3. Expression of ADAMTS-4, which encodes a protein for aggrecan remodeling, is increased. NCCM also protects against IL-1+FasL-mediated down-regulation of Ank expression. Furthermore, NP cells treated with NCCM in the presence of IL-1ß+Fas-L down-regulate the expression of IL-6 by almost 50%. BCCM does not mediate cell death/apoptosis in target bovine NP cells.

Conclusions

Notochordal cell-secreted factors suppress NP cell death by inhibition of activated caspase-9 and -3/7 activity and by up-regulating genes contributing anabolic activity and matrix protection of the IVD NP. Harnessing the restorative powers of the notochordal cell could lead to novel cellular and molecular strategies in the treatment of DDD.  相似文献   
108.
Despite the widespread biological function of carbohydrates, the polysaccharide synthesis mechanisms of glycosyltransferases remain largely unexplored. Bacterial levansucrases (glycoside hydrolase family 68) synthesize high molecular weight, β-(2,6)-linked levan from sucrose by transfer of fructosyl units. The kinetic and biochemical characterization of Bacillus megaterium levansucrase SacB variants Y247A, Y247W, N252A, D257A, and K373A reveal novel surface motifs remote from the sucrose binding site with distinct influence on the polysaccharide product spectrum. The wild type activity (k(cat)) and substrate affinity (K(m)) are maintained. The structures of the SacB variants reveal clearly distinguishable subsites for polysaccharide synthesis as well as an intact active site architecture. These results lead to a new understanding of polysaccharide synthesis mechanisms. The identified surface motifs are discussed in the context of related glycosyltransferases.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号