排序方式: 共有53条查询结果,搜索用时 15 毫秒
41.
Background
Asthma is characterized by type 2 T-helper cell (Th2) inflammation, goblet cell hyperplasia, airway hyperreactivity, and airway fibrosis. Monocyte chemoattractant protein-1 (MCP-1 or CCL2) and its receptor, CCR2, have been shown to play important roles in the development of Th2 inflammation. CCR2-deficient mice have been found to have altered inflammatory and physiologic responses in some models of experimental allergic asthma, but the role of CCR2 in contributing to inflammation and airway hyperreactivity appears to vary considerably between models. Furthermore, MCP-1-deficient mice have not previously been studied in models of experimental allergic asthma.Methods
To test whether MCP-1 and CCR2 are each required for the development of experimental allergic asthma, we applied an Aspergillus antigen-induced model of Th2 cytokine-driven allergic asthma associated with airway fibrosis to mice deficient in either MCP-1 or CCR2. Previous studies with live Aspergillus conidia instilled into the lung revealed that MCP-1 and CCR2 play a role in anti-fungal responses; in contrast, we used a non-viable Aspergillus antigen preparation known to induce a robust eosinophilic inflammatory response.Results
We found that wild-type C57BL/6 mice developed eosinophilic airway inflammation, goblet cell hyperplasia, airway hyperreactivity, elevations in serum IgE, and airway fibrosis in response to airway challenge with Aspergillus antigen. Surprisingly, mice deficient in either MCP-1 or CCR2 had responses to Aspergillus antigen similar to those seen in wild-type mice, including production of Th2 cytokines.Conclusion
We conclude that robust Th2-mediated lung pathology can occur even in the complete absence of MCP-1 or CCR2. 相似文献42.
Jeroen Lakerveld Sandra DM Bot Marijke J Chinapaw Maurits W van Tulder Patricia van Oppen Jacqueline M Dekker Giel Nijpels 《BMC endocrine disorders》2008,8(1):1-11
Background
Insulin resistance and diabetes are associated with increased oxidative stress and impairment of cellular defence systems. Our purpose was to investigate the interaction between glucose metabolism, antioxidative capacity and heat shock protein (HSP) defence in different skeletal muscle phenotypes among middle-aged obese subjects during a long-term exercise and dietary intervention. As a sub-study of the Finnish Diabetes Prevention Study (DPS), 22 persons with impaired glucose tolerance (IGT) taking part in the intervention volunteered to give samples from the vastus lateralis muscle. Subjects were divided into two sub-groups (IGTslow and IGTfast) on the basis of their baseline myosin heavy chain profile. Glucose metabolism, oxidative stress and HSP expressions were measured before and after the 2-year intervention.Results
Exercise training, combined with dietary counselling, increased the expression of mitochondrial chaperones HSP60 and glucose-regulated protein 75 (GRP75) in the vastus lateralis muscle in the IGTslow group and that of HSP60 in the IGTfast group. In cytoplasmic chaperones HSP72 or HSP90 no changes took place. In the IGTslow group, a significant positive correlation between the increased muscle content of HSP60 and the oxygen radical absorbing capacity values and, in the IGTfast group, between the improved VO2max value and the increased protein expression of GRP75 were found. Serum uric acid concentrations decreased in both sub-groups and serum protein carbonyl concentrations decreased in the IGTfast group.Conclusion
The 2-year intervention up-regulated mitochondrial HSP expressions in middle-aged subjects with impaired glucose tolerance. These improvements, however, were not correlated directly with enhanced glucose tolerance. 相似文献43.
Background
The NCBI taxonomy provides one of the most powerful ways to navigate sequence data bases but currently users are forced to formulate queries according to a single taxonomic classification. Given that there is not universal agreement on the classification of organisms, providing a single classification places constraints on the questions biologists can ask. However, maintaining multiple classifications is burdensome in the face of a constantly growing NCBI classification. 相似文献44.
Partial 18S rRNA sequences of five chelicerate arthropods plus a
crustacean, myriapod, insect, chordate, echinoderm, annelid, and
platyhelminth were compared. The sequence data were used to infer phylogeny
by using a maximum-parsimony method, an evolutionary-distance method, and
the evolutionary-parsimony method. The phylogenetic inferences generated by
maximum-parsimony and distance methods support both monophyly of the
Arthropoda and monophyly of the Chelicerata within the Arthropoda. These
results are congruent with phylogenies based on rigorous cladistic analyses
of morphological characters. Results support the inclusion of the
Arthropoda within a spiralian or protostome coelomate clade that is the
sister group of a deuterostome clade, refuting the hypothesis that the
arthropods represent the "primitive" sister group of a protostome coelomate
clade. Bootstrap analyses and consideration of all trees within 1% of the
length of the most parsimonious tree suggest that relationships between the
nonchelicerate arthropods and relationships within the chelicerate clade
cannot be reliably inferred with the partial 18S rRNA sequence data. With
the evolutionary-parsimony method, support for monophyly of the Arthropoda
is found in the majority of the combinations analyzed if the coelomates are
used as "outgroups." Monophyly of the Chelicerata is supported in most
combinations assessed. Our analyses also indicate that the
evolutionary-parsimony method, like distance and parsimony, may be biased
by taxa with long branches. We suggest that a previous study's inference of
the Arthropoda as paraphyletic may be the result of (a) having two few
arthropod taxa available for analysis and (b) including long-branched taxa.
相似文献
45.
46.
EG Ciolac SS Mantuani CM Neiva CEL Verardi DM Pess?a-Filho L Pimenta 《Biology of sport / Institute of Sport》2015,32(2):103-108
The aim of the present study was to analyse the usefulness of the 6-20 rating of perceived exertion (RPE) scale for prescribing and self-regulating high-intensity interval training (HIT) in young individuals. Eight healthy young subjects (age = 27.5±6.7 years) performed maximal graded exercise testing to determine their maximal and reserve heart rate (HR). Subjects then performed two HIT sessions (20 min on a treadmill) prescribed and regulated by their HR (HR: 1 min at 50% alternated with 1 min at 85% of reserve HR) or RPE (RPE: 1 minute at the 9-11 level [very light-fairly light] alternated with 1 minute at the 15-17 level [hard-very hard]) in random order. HR response and walking/running speed during the 20 min of exercise were compared between sessions. No significant difference between sessions was observed in HR during low- (HR: 135±15 bpm; RPE: 138±20 bpm) and high-intensity intervals (HR: 168±15 bpm; RPE: 170±18 bpm). Walking/running speed during low- (HR: 5.7±1.2 km · h−1; RPE: 5.7±1.3 km · h−1) and high-intensity intervals (HR: 7.8±1.9 km · h−1; RPE: 8.2±1.7 km · h−1) was also not different between sessions. No significant differences were observed in HR response and walking/running speed between HIT sessions prescribed and regulated by HR or RPE. This finding suggests that the 6-20 RPE scale may be a useful tool for prescribing and self-regulating HIT in young subjects. 相似文献
47.
48.
Savage DB Zhai L Ravikumar B Choi CS Snaar JE McGuire AC Wou SE Medina-Gomez G Kim S Bock CB Segvich DM Solanky B Deelchand D Vidal-Puig A Wareham NJ Shulman GI Karpe F Taylor R Pederson BA Roach PJ O'Rahilly S DePaoli-Roach AA 《PLoS medicine》2008,5(1):e27
Background
Stored glycogen is an important source of energy for skeletal muscle. Human genetic disorders primarily affecting skeletal muscle glycogen turnover are well-recognised, but rare. We previously reported that a frameshift/premature stop mutation in PPP1R3A, the gene encoding RGL, a key regulator of muscle glycogen metabolism, was present in 1.36% of participants from a population of white individuals in the UK. However, the functional implications of the mutation were not known. The objective of this study was to characterise the molecular and physiological consequences of this genetic variant.Methods and Findings
In this study we found a similar prevalence of the variant in an independent UK white population of 744 participants (1.46%) and, using in vivo 13C magnetic resonance spectroscopy studies, demonstrate that human carriers (n = 6) of the variant have low basal (65% lower, p = 0.002) and postprandial muscle glycogen levels. Mice engineered to express the equivalent mutation had similarly decreased muscle glycogen levels (40% lower in heterozygous knock-in mice, p < 0.05). In muscle tissue from these mice, failure of the truncated mutant to bind glycogen and colocalize with glycogen synthase (GS) decreased GS and increased glycogen phosphorylase activity states, which account for the decreased glycogen content.Conclusions
Thus, PPP1R3A C1984ΔAG (stop codon 668) is, to our knowledge, the first prevalent mutation described that directly impairs glycogen synthesis and decreases glycogen levels in human skeletal muscle. The fact that it is present in ∼1 in 70 UK whites increases the potential biomedical relevance of these observations. 相似文献49.
50.
David B Savage Lanmin Zhai Balasubramanian Ravikumar Cheol Soo Choi Johanna E Snaar Amanda C McGuire Sung-Eun Wou Gemma Medina-Gomez Sheene Kim Cheryl B Bock Dyann M Segvich Bhavana Solanky Dinesh Deelchand Antonio Vidal-Puig Nicholas J Wareham Gerald I Shulman Fredrik Karpe Roy Taylor Bartholomew A Pederson Peter J Roach Stephen O'Rahilly Anna A DePaoli-Roach 《PLoS medicine》2008,5(12)