首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   34篇
  国内免费   1篇
  523篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   39篇
  2020年   10篇
  2019年   14篇
  2018年   11篇
  2017年   9篇
  2016年   14篇
  2015年   21篇
  2014年   26篇
  2013年   40篇
  2012年   38篇
  2011年   30篇
  2010年   37篇
  2009年   22篇
  2008年   24篇
  2007年   30篇
  2006年   21篇
  2005年   14篇
  2004年   18篇
  2003年   11篇
  2002年   11篇
  2001年   9篇
  2000年   4篇
  1999年   6篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   5篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
排序方式: 共有523条查询结果,搜索用时 15 毫秒
431.
Saleem  D.  Zuhra  Z.  Akhtar  W.  Koiwa  H.  Mahmood  T. 《Russian Journal of Plant Physiology》2020,67(5):822-826
Russian Journal of Plant Physiology - Polyphenol oxidases (PPOs) are ubiquitous enzymes of plant defense which transform polyphenols into quinones that response to biotic and abiotic stresses....  相似文献   
432.
In this review, literature data on phytochemical and biological investigations on the genus Pluchea are compiled. Pluchea is a genus of flowering plants in the Asteraceae family and comprises ca. 80 species distributed mainly in Northern and Southern America, Africa, Asia, and Australia. Sesquiterpenoids and flavonoids are the main constituents of this genus. Compounds isolated from plants of the Pluchea genus display a variety of biological properties, viz., anticancer, antileishmanial, immunosuppressive, antioxidant, anti‐acetylcholinesterase, antimicrobial, trypanocidal, hepatoprotective, cytotoxic, larvicidal, anti‐ulcer, anti‐inflammatory, and antinociceptive activities.  相似文献   
433.
Seventy‐one isolates of Venturia inaequalis collected from commercial apple growing areas of Kashmir were characterized on international differential apple hosts and analyzed by Random Amplified Polymorphic Microsatellites (RAMS), PCR–RFLP and sequencing of rDNA for elucidation of variability. Virulence analysis on a differential set categorized them into four pathogenic races, viz. (0), (1), (2) and (1,2) in the first time comprehensive molecular analysis of this in India and especially from Jammu and Kashmir, a north‐western Himalayan state of India. Race groups (0), (1), (2) and (1,2) contained isolates from diverse areas without specificity to any geographical zone or region. Cluster analysis of the RAMS and PCR–RFLP revealed a high genotypic diversity within V. inaequalis isolates. Three major clusters were obtained and the isolates could not be categorized on the basis of either their geographical distribution or the cultivar from which they were isolated. amova analysis of pathogen populations at regional or race level revealed high diversity within the populations. Pairwise FST comparisons between the populations revealed less genetic differentiation, thereby indicating existence of frequent gene flow in Kashmir. The 24 rDNA sequences of V. inaequalis showed high haplotype diversity of 0.938 and 0.40 nucleotide diversity. Again clustering at regional or race level detected greater part of variability within groups than among groups, thereby indicating high diversity in V. inaequalis populations in Kashmir valley.  相似文献   
434.
A method to rapidly assess the oligomeric composition of multimeric proteins is notably absent from reported schemes for high throughput production and crystallization of membrane proteins. In this report we have investigated the suitability of PFO-PAGE electrophoresis for this purpose and present examples where it proves highly informative in selecting conditions favouring the functional oligomeric state of the target protein. Features such as the ability to analyze several samples in parallel, including crude membrane extracts, suggest it will be highly adaptable to high throughput analysis of membrane proteins.  相似文献   
435.
Anand SP  Chattopadhyay A  Khan SA 《Plasmid》2005,54(2):104-113
Plasmid rolling-circle replication initiates by covalent extension of a nick generated at the plasmid double-strand origin (dso) by the initiator protein. The RepC initiator protein binds to the plasmid pT181 dso in a sequence-specific manner and recruits the PcrA helicase through a protein-protein interaction. Subsequently, PcrA unwinds DNA at the nick site followed by replication by DNA polymerase III. The pcrA3 mutant of Staphylococcus aureus has previously been shown to be defective in plasmid pT181 replication. Suppressor mutations in the repC initiator gene have been isolated that allow pT181 replication in the pcrA3 mutant. One such suppressor mutant contains a D57Y change in the RepC protein. To identify the nature of the defect in PcrA3, we have purified this mutant protein and studied its biochemical activities. Our results show that while PcrA3 retains its DNA binding activity, it is defective in its helicase and RepC-dependent pT181 DNA unwinding activities. We have also purified the RepC D57Y mutant and shown that it is similar in its biochemical activities to wild-type RepC. RepC D57Y supported plasmid pT181 replication in cell-free extracts made from wild-type S. aureus but not from the pcrA3 mutant. We also demonstrate that both wild-type RepC and its D57Y mutant are capable of a direct physical interaction with both wild-type PcrA and the PcrA3 mutant. Our results suggest that the inability of PcrA3 to support pT181 replication is unlikely to be due to its inability to interact with RepC. Rather, it is likely that a defect in its helicase activity is responsible for its inability to replicate the pT181 plasmid.  相似文献   
436.
BACKGROUND: Preclinical data have indicated the anti-epidermal growth factor receptor (EGFR) agent cetuximab (Erbitux) as a radiosensitizer in pancreatic cancer, but this has not been specifically addressed in a clinical study. We report the results of an original study initiated in 2007, where cetuximab was tested with radiotherapy (RT) alone in locally advanced pancreatic cancer in a phase II trial (PACER). METHODS: Patients (n = 21) received cetuximab loading dose (400 mg/m2) and weekly dose (250 mg/m2) during RT (50.4 Gy in 28 fractions). Toxicity and disease response end point data were prospectively assessed. A feasibility study of on-trial patient blood and skin sampling was incorporated. RESULTS: Treatment was well tolerated, toxicity was low; most patients (71%) experienced acute toxicities of grade 2 or less. Six months posttreatment, stable local disease was achieved in 90% of evaluable patients, but only 33% were free from metastatic progression. Median overall survival was 7.5 months, actuarial survival was 33% at 1 year and 11% at 3 years, reflecting swift metastatic progression in some patients but good long-term control of localized disease in others. High-grade acneiform rash (P = .0027), posttreatment stable disease (P = .0059), pretreatment cancer antigen 19.9 (CA19.9) level (P = .0042) associated with extended survival. Patient skin and blood samples yielded sufficient RNA and good quality protein, respectively. CONCLUSIONS: The results indicate that cetuximab inhibits EGFR-mediated radioresistance to achieve excellent local control with minimal toxicity but does not sufficiently control metastatic progression in all patients. Translational studies of patient tissue samples may yield molecular information that may enable individual treatment response prediction.  相似文献   
437.
Glomerular diseases are commonly characterized by podocyte injury including apoptosis, actin cytoskeleton rearrangement and detachment. However, the strategies for preventing podocyte damage remain insufficient. Recently autophagy has been regarded as a vital cytoprotective mechanism for keeping podocyte homeostasis. Thus, it is reasonable to utilize this mechanism to attenuate podocyte injury. Trehalose, a natural disaccharide, is an mTOR independent autophagy inducer. It is unclear whether trehalose alleviates podocyte injury. Therefore, we investigated the efficacy of trehalose in puromycin aminonucleoside (PAN)-treated podocytes which mimic cell damage in minimal change nephrotic syndrome in vitro. Human conditional immortalized podocytes were treated with trehalose with or without PAN. Autophagy was investigated by immunofluorescence staining for LC3 puncta and Western blotting for LC3, Atg5, p-AMPK, p-mTOR and its substrates. Podocyte apoptosis and necrosis were evaluated by flow cytometry and by measuring lactate dehydrogenase activity respectively. We also performed migration assay to examine podocyte recovery. It was shown that trehalose induced podocyte autophagy in an mTOR independent manner and without reactive oxygen species involvement. Podocyte apoptosis significantly decreased after trehalose treatment, while the inhibition of trehalose-induced autophagy abolished its protective effect. Additionally, the disrupted actin cytoskeleton of podocytes was partially reversed by trehalose, accompanying with less lamellipodias and diminished motility. These results suggested that trehalose induced autophagy in human podocytes and showed cytoprotective effects in PAN-treated podocytes.  相似文献   
438.
The percentage of soybean cell culture protoplasts permeabilized by electroporation was dependent on the voltage and the number of successive pulses that were applied. Best results were obtained with two 50 milliseconds, 400 volts per centimeter pulses after which 78% of the surviving protoplasts had been permeabilized to the fluorescent dye calcein. Quantitation of the volume of extracellular fluid taken up was performed using radioactive inulin (molecular weight 5000-5500). Typically between 20 and 40 nanoliters of fluid was taken up by 106 protoplasts. Electroporation and hypotonic shock treatments (M Saleem, AJ Cutler 1986 J Plant Physiol 124: 11-21) were compared with respect to the volume of fluid taken up under optimum conditions. Electroporation produced 10 times more uptake than hypotonic shock treatment. In all experiments there was a direct relationship between the number of protoplasts lysed and both the amount of fluid taken up and the percentage of surviving protoplasts that were permeabilized.  相似文献   
439.
PcrA is an essential helicase in gram-positive bacteria, and a gene encoding this helicase has been identified in all such organisms whose genomes have been sequenced so far. The precise role of PcrA that makes it essential for cell growth is not known; however, PcrA does not appear to be necessary for chromosome replication. The pcrA gene was identified in the genome of Bacillus anthracis on the basis of its sequence homology to the corresponding genes of Bacillus subtilis and Staphylococcus aureus, with which it shares 76 and 72% similarity, respectively. The pcrA gene of B. anthracis was isolated by PCR amplification and cloning into Escherichia coli. The PcrA protein was overexpressed with a His6 fusion at its amino-terminal end. The purified His-PcrA protein showed ATPase activity that was stimulated in the presence of single-stranded (ss) DNA (ssDNA). Interestingly, PcrA showed robust 3'-->5' as well as 5'-->3' helicase activities, with substrates containing a duplex region and a 3' or 5' ss poly(dT) tail. PcrA also efficiently unwound oligonucleotides containing a duplex region and a 5' or 3' ss tail with the potential to form a secondary structure. DNA binding experiments showed that PcrA bound much more efficiently to oligonucleotides containing a duplex region and a 5' or 3' ss tail with a potential to form a secondary structure than to those with ssDNAs or duplex DNAs with ss poly(dT) tails. Our results suggest that specialized DNA structures and/or sequences represent natural substrates of PcrA in biochemical processes that are essential for the growth and survival of gram-positive organisms, including B. anthracis.  相似文献   
440.
The display of heterologous proteins on the microbial cell surface by means of recombinant DNA biotechnologies has emerged as a novel approach for bioremediation of contaminated sites. Both bacteria and yeasts have been investigated for this purpose. Cell surface expression of specific proteins allows the engineered microorganisms to transport, bio-accumulate and/or detoxify heavy metals as well as to degrade xenobiotics. These otherwise would not be taken up and transformed by the microbial cell. This review focuses on the application of cell surface displays for the enhanced bio-accumulation of heavy metals by metal binding proteins. It also reviews the biodegradation of xenobiotics by enzymes/proteins expressed on microbial cell surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号