首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   664篇
  免费   40篇
  国内免费   3篇
  2023年   3篇
  2022年   10篇
  2021年   27篇
  2020年   15篇
  2019年   9篇
  2018年   15篇
  2017年   10篇
  2016年   20篇
  2015年   35篇
  2014年   40篇
  2013年   44篇
  2012年   65篇
  2011年   63篇
  2010年   41篇
  2009年   24篇
  2008年   57篇
  2007年   47篇
  2006年   32篇
  2005年   26篇
  2004年   44篇
  2003年   19篇
  2002年   19篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   6篇
  1995年   3篇
  1994年   2篇
  1993年   2篇
  1992年   4篇
  1991年   4篇
  1990年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有707条查询结果,搜索用时 93 毫秒
11.
Shrubs belonging to Carissa genus (Apocyanaceae family) are potential sources of food, medicine and fuel, yet they are wallowing under obscurity and rarely been exploited. Edibility of the pulpy Carissa fruits is known to only a meagre few. Since antiquity, the stem, root bark, leaves, fruit and seed extracts have been used in folklore medication. Now, the emerging scientific investigations are validating the ethno-medicinal uses of these species. Bioactive compounds which include viz. polyphenolics, flavonoids, flavanones, lignans and sesquiterpenes imparting therapeutic potential to these species have been isolated. In vitro and in vivo studies have shown these species to have antioxidant, analgesic, anti-inflammatory, hypolipidemic, wound healing, antimicroabial, antidiabetic, antiepileptic, anticancer, diuretic, nephrotoxicity amelioration and hepatoprotective activity. This miraculous plant extract has also been effective in the management of veterinary ailments. Apart from the medicinal attributes, this genus also holds promise as a suitable alternative crop for harvesting renewable energy. Micropropagtion is being tried for rapid multiplication of the valuable species. This review summarizes the recent findings for promoting the versatility of this genus.  相似文献   
12.
Paeonia emodi (Peony) is a well known Himalayan medicinal plant used in the treatment of hypertension, palpitations, asthma, uterine diseases, colic, bilious obstructions and has also been used as an anticoagulant. Many of these ethnomedicinal properties have been experimentally proven in different animal models. The present work reviews the ethnopharmacology, therapeutic potential and phytochemistry of P. emodi. Different classes of natural products like triterpenoids, monoterpenoids, phenolics and tannins have been isolated from the species. These compounds possess wide therapeutic profile like cardiovascular and airway relaxant, lipoxygenase and β-Glucuronidase inhibitory and free radical scavenging properties.  相似文献   
13.
The polyphenolic alcohol resveratrol has demonstrated promising activities for the prevention and treatment of cancer. Different modes of action have been described for resveratrol including the activation of sirtuins, which represent the class III histone deacetylases (HDACs). However, little is known about the activity of resveratrol on the classical HDACs of class I, II and IV, although these classes are involved in cancer development or progression and inhibitors of HDACs (HDACi) are currently under investigation as promising novel anticancer drugs. We could show by in silico docking studies that resveratrol has the chemical structure to inhibit the activity of different human HDAC enzymes. In vitro analyses of overall HDAC inhibition and a detailed HDAC profiling showed that resveratrol inhibited all eleven human HDACs of class I, II and IV in a dose-dependent manner. Transferring this molecular mechanism into cancer therapy strategies, resveratrol treatment was analyzed on solid tumor cell lines. Despite the fact that hepatocellular carcinoma (HCC) is known to be particularly resistant against conventional chemotherapeutics, treatment of HCC with established HDACi already has shown promising results. Testing of resveratrol on hepatoma cell lines HepG2, Hep3B and HuH7 revealed a dose-dependent antiproliferative effect on all cell lines. Interestingly, only for HepG2 cells a specific inhibition of HDACs and in turn a histone hyperacetylation caused by resveratrol was detected. Additional testing of human blood samples demonstrated a HDACi activity by resveratrol ex vivo. Concluding toxicity studies showed that primary human hepatocytes tolerated resveratrol, whereas in vivo chicken embryotoxicity assays demonstrated severe toxicity at high concentrations. Taken together, this novel pan-HDACi activity opens up a new perspective of resveratrol for cancer therapy alone or in combination with other chemotherapeutics. Moreover, resveratrol may serve as a lead structure for chemical optimization of bioavailability, pharmacology or HDAC inhibition.  相似文献   
14.
Evolutionary rescue can prevent populations from declining under climate change, and should be more likely at high-latitude, “leading” edges of species’ ranges due to greater temperature anomalies and gene flow from warm-adapted populations. Using a resurrection study with seeds collected before and after a 7-year period of record warming, we tested for thermal adaptation in the scarlet monkeyflower Mimulus cardinalis. We grew ancestors and descendants from northern-edge, central, and southern-edge populations across eight temperatures. Despite recent climate anomalies, populations showed limited evolution of thermal performance curves. However, one southern population evolved a narrower thermal performance breadth by 1.31°C, which matches the direction and magnitude of the average decrease in seasonality experienced. Consistent with the climate variability hypothesis, thermal performance breadth increased with temperature seasonality across the species’ geographic range. Inconsistent with performance trade-offs between low and high temperatures across populations, we did not detect a positive relationship between thermal optimum and mean temperature. These findings fail to support the hypothesis that evolutionary response to climate change is greatest at the leading edge, and suggest that the evolution of thermal performance is unlikely to rescue most populations from the detrimental effects of rapidly changing climate.  相似文献   
15.
Glioblastoma multiforme (GBM) is the most malignant of all the brain tumors with very low median survival time of one year, as per Central Brain Tumor Registry of the USA, 2001. Efforts are ongoing to understand this disease pathogenesis in complete details. Global gene expression changes in GBM pathogenesis have been studied by several groups using microarray technology (e.g. Carro et al., 2010). One of the many approaches to ‘understand the control mechanisms underlying the observed changes in the activity of a biological process’ (Cline et al., 2007) is integration of gene expression and protein–protein interactions (PPI) datasets. Among several examples, aberrant activation of Wnt/β-catenin signaling pathway as well as sonic hedgehog (SHH) signaling pathway is reported in GBMs (Klaus & Birchmeier, 2008). Further, these two pathways are also involved in proliferation and clonogenicity of glioma cancer stem cells (Li et al., 2009), which are thought to play a role in glioma initiation, proliferation, and invasion, and are one of the important points of intervention. Hedgehog–Gli1 signaling is also found to regulate the expression of stemness genes. In this paper, analyses of the relationship between the significant differential expression of these and other genes and the connectivity as well as topological features of a PPI network would be discussed. This way, genes potentially overlooked when relying solely on expression profiles may be identified which can be biologically relevant as possible drug target/s or disease biomarker/s.  相似文献   
16.
17.
Li J  Agarwal S  Roeder GS 《Genetics》2007,175(1):143-154
Spore formation in Saccharomyces cerevisiae requires the synthesis of prospore membranes (PSMs) followed by the assembly of spore walls (SWs). We have characterized extensively the phenotypes of mutants in the sporulation-specific genes, SSP2 and OSW1, which are required for spore formation. A striking feature of the osw1 phenotype is asynchrony of spore development, with some spores displaying defects in PSM formation and others spores in the same ascus blocked at various stages in SW development. The Osw1 protein localizes to spindle pole bodies (SPBs) during meiotic nuclear division and subsequently to PSMs/SWs. We propose that Osw1 performs a regulatory function required to coordinate the different stages of spore morphogenesis. In the ssp2 mutant, nuclei are surrounded by PSMs and SWs; however, PSMs and SWs often also encapsulate anucleate bodies both inside and outside of spores. In addition, the SW is not as thick as in wild type. The ssp2 mutant defect is partially suppressed by overproduction of either Spo14 or Sso1, both of which promote the fusion of vesicles at the outer plaque of the SPB early in PSM formation. We propose that Ssp2 plays a role in vesicle fusion during PSM formation.  相似文献   
18.
We investigated the combination of weak anion exchange (WAX) fractionation and on-line reversed-phase liquid chromatography (RPLC) separation using a 12 T FTICR mass spectrometer for the detection of intact proteins from a Shewanella oneidensis MR-1 cell lysate. This work aimed at optimizing intact protein detection for profiling proteins at a level that incorporates their modification state. A total of 715 intact proteins were detected, and the combined results from the WAX fractions and the unfractionated cell lysate were aligned using LC-MS features to facilitate protein abundance measurements. Protein identifications and post-translational modifications were assigned for approximately 10% of the detected proteins by comparing intact protein mass measurements to proteins identified in peptide MS/MS analysis of an aliquot of the same fraction. Intact proteins were also detected for S. oneidensis lysates obtained from cells grown on 13C-, 15N-depleted media under aerobic and sub-oxic conditions. The strategy can be readily applied for measuring differential protein abundances and provides a platform for high-throughput selection of biologically relevant targets for further characterization.  相似文献   
19.
The prognostic signatures play an essential role in the era of personalised therapy for cancer patients including lung adenocarcinoma (LUAD). Long noncoding RNA (LncRNA), a relatively novel class of RNA, has shown to play a crucial role in all the areas of cancer biology. Here, we developed and validated a robust LncRNA-based prognostic signature for LUAD patients using three different cohorts. In the discovery cohort, four LncRNAs were identified with 10% false discovery rate and a hazard ratio of >10 using univariate Cox regression analysis. A risk score, generated from the four LncRNAs’ expression, was found to be a significant predictor of survival in the discovery and validation cohort (p = 9.97 × 10 −8 and 1.41 × 10 −3, respectively). Further optimisation of four LncRNAs signature in the validation cohort, generated a three LncRNAs prognostic score (LPS), which was found to be an independent predictor of survival in both the cohorts ( p = 1.00 × 10 −6 and 7.27 × 10 −4, respectively). The LPS also significantly divided survival in clinically important subsets, including Stage I ( p = 9.00 × 10 −4 and 4.40 × 10 −2, respectively), KRAS wild-type (WT), KRAS mutant ( p = 4.00 × 10 −3 and 4.30 × 10 −2, respectively) and EGFR WT ( p = 2.00 × 10 −4). In multivariate analysis LPS outperformed, eight previous prognosticators. Further, individual members of LPS showed a significant correlation with survival in microarray data sets. Mutation analysis showed that high-LPS patients have a higher mutation rate and inactivation of the TP53 pathway. In summary, we identified and validated a novel LncRNA signature LPS for LUAD.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号