首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   904篇
  免费   45篇
  国内免费   3篇
  952篇
  2023年   5篇
  2022年   17篇
  2021年   31篇
  2020年   21篇
  2019年   12篇
  2018年   24篇
  2017年   12篇
  2016年   31篇
  2015年   45篇
  2014年   55篇
  2013年   57篇
  2012年   83篇
  2011年   83篇
  2010年   55篇
  2009年   29篇
  2008年   64篇
  2007年   55篇
  2006年   45篇
  2005年   33篇
  2004年   55篇
  2003年   22篇
  2002年   24篇
  2001年   9篇
  2000年   6篇
  1999年   4篇
  1998年   4篇
  1997年   3篇
  1996年   9篇
  1995年   4篇
  1994年   5篇
  1993年   2篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1984年   2篇
  1982年   3篇
  1981年   3篇
  1979年   2篇
  1977年   1篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1970年   1篇
  1968年   1篇
  1964年   3篇
  1963年   1篇
排序方式: 共有952条查询结果,搜索用时 11 毫秒
41.
The productivity of plants as biofuel or biomaterial crops is established by both the yield of plant biomass per unit area of land and the efficiency of conversion of the biomass to biofuel. Higher yielding biofuel crops with increased conversion efficiencies allow production on a smaller land footprint minimizing competition with agriculture for food production and biodiversity conservation. Plants have traditionally been domesticated for food, fibre and feed applications. However, utilization for biofuels may require the breeding of novel phenotypes, or new species entirely. Genomics approaches support genetic selection strategies to deliver significant genetic improvement of plants as sources of biomass for biofuel manufacture. Genetic modification of plants provides a further range of options for improving the composition of biomass and for plant modifications to assist the fabrication of biofuels. The relative carbohydrate and lignin content influences the deconstruction of plant cell walls to biofuels. Key options for facilitating the deconstruction leading to higher monomeric sugar release from plants include increasing cellulose content, reducing cellulose crystallinity, and/or altering the amount or composition of noncellulosic polysaccharides or lignin. Modification of chemical linkages within and between these biomass components may improve the ease of deconstruction. Expression of enzymes in the plant may provide a cost‐effective option for biochemical conversion to biofuel.  相似文献   
42.
Reassortment of influenza viral RNA (vRNA) segments in co-infected cells can lead to the emergence of viruses with pandemic potential. Replication of influenza vRNA occurs in the nucleus of infected cells, while progeny virions bud from the plasma membrane. However, the intracellular mechanics of vRNA assembly into progeny virions is not well understood. Here we used recent advances in microscopy to explore vRNA assembly and transport during a productive infection. We visualized four distinct vRNA segments within a single cell using fluorescent in situ hybridization (FISH) and observed that foci containing more than one vRNA segment were found at the external nuclear periphery, suggesting that vRNA segments are not exported to the cytoplasm individually. Although many cytoplasmic foci contain multiple vRNA segments, not all vRNA species are present in every focus, indicating that assembly of all eight vRNA segments does not occur prior to export from the nucleus. To extend the observations made in fixed cells, we used a virus that encodes GFP fused to the viral polymerase acidic (PA) protein (WSN PA-GFP) to explore the dynamics of vRNA assembly in live cells during a productive infection. Since WSN PA-GFP colocalizes with viral nucleoprotein and influenza vRNA segments, we used it as a surrogate for visualizing vRNA transport in 3D and at high speed by inverted selective-plane illumination microscopy. We observed cytoplasmic PA-GFP foci colocalizing and traveling together en route to the plasma membrane. Our data strongly support a model in which vRNA segments are exported from the nucleus as complexes that assemble en route to the plasma membrane through dynamic colocalization events in the cytoplasm.  相似文献   
43.
Cationic antimicrobial peptides (CAMPs) are novel candidates for drug development. Here we describe design of six short and potent CAMPs (SA-1 to SA-6) based on a minimalist template of 12 residues H+HHG+HH+HH+NH2 (where H: hydrophobic amino acid and +: charged hydrophilic amino acid). Designed peptides exhibit good antibacterial activity in micro molar concentration range (1-32 μg/ml) and rapid clearance of Gram-positive and Gram-negative bacterial strains at concentrations higher than MIC. For elucidating mode of action of designed peptides various biophysical studies including CD and Trp fluorescence were performed using model membranes. Further based on activity, selectivity and membrane bound structure; modes of action of Trp rich peptide SA-3 and template based peptide SA-4 were compared. Calcein dye leakage and transmission electron microscopic studies with model membranes exhibited selective membrane active mode of action for peptide SA-3 and SA-4. Extending our work from model membranes to intact E. coli ATCC 11775 in scanning electron micrographs we could visualize different patterns of surface perturbation caused by peptide SA-3 and SA-4. Further at low concentration rapid translocation of FITC-tagged peptide SA-3 into the cytoplasm of E. coli cells without concomitant membrane perturbation indicates involvement of intracellular targeting mechanism as an alternate mode of action as was also evidenced in DNA retardation assay. For peptide SA-4 concentration dependent translocation into the bacterial cytoplasm along with membrane perturbation was observed. Establishment of a non specific membrane lytic mode of action of these peptides makes them suitable candidates for drug development.  相似文献   
44.
The present study was carried out to determine the accumulation and variation of trace elements in roots and leaves of Asparagus racemosus collected from four different altitudes in Uttarakhand, India, by atomic absorption spectroscopy. The metals investigated were Zn, Cu, Mn, Fe, Co, Na, K, Ca, and Li. The concentration level of Fe was found to be highest at an altitude of 2,250 m, whereas the level of Cu was lowest. The maximum concentrations of Zn, Cu, Mn, Fe, Co, Na, K, Ca, and Li were found to be 165.0?±?3.2, 34.0?±?0.5, 84.0?±?0.7, 2,040.0?±?0.3, 122.0?±?1.5, 745.0?±?0.3, 13,260.0?±?3.5, 6,153.0?±?1.6, and 58.0?±?3.8 mg/kg, respectively.  相似文献   
45.
The human prostate gland undergoes a prominent alteration in Zn+2 homeostasis during the development of prostate cancer. The goal of the present study was to determine if the immortalized human prostate cell line (RWPE-1) could serve as a model system to study the role of zinc in prostate cancer. The study examined the expression of mRNA for 19 members of the zinc transporter gene family in normal prostate tissue, the prostate RWPE-1 cell line, and the LNCaP, DU-145 and PC-3 prostate cancer cell lines. The study demonstrated that the expression of the 19 zinc transporters was similar between the RWPE-1 cell line and the in situ prostate gland. Of the 19 zinc transporters, only 5 had levels that were different between the RWPE-1 cells and the tissue samples; all five being increased (ZnT-6, Zip-1, Zip-3A, Zip-10, and Zip-14). The response of the 19 transporters was also determined when the cell lines were exposed to 75 microM Zn+2 for 24 h. It was shown for the RWPE-1 cells that only 5 transporters responded to Zn+2 with mRNA for ZnT-1 and ZnT-2 being increased while mRNA for ZnT-7, Zip-7 and Zip-10 transporters were decreased. It was shown for the LNCaP, DU-145 and PC-3 cells that Zn+2 had no effect on the mRNA levels of all 19 transporters except for an induction of ZnT-1 in PC-3 cells. Overall, the study suggests that the RWPE-1 cells could be a valuable model for the study of the zinc transporter gene family in the prostate.  相似文献   
46.
Human T-cell leukemia virus type-I expresses Tax, a 40-kDa oncoprotein that activates IkappaB kinase (IKK), resulting in constitutive activation of NFkappaB. Herein, we have developed an in vitro signaling assay to analyze IKK complex activation by recombinant Tax. Using this assay in combination with reporter assays, we demonstrate that Tax-mediated activation of IKK is independent of phosphatases. We show that sustained activation of the Tax-mediated activation of the NFkappaB pathway is dependent on an intact Hsp90-IKK complex. By acetylating and thereby preventing activation of the IKK complex by the Yersinia effector YopJ, we demonstrate that Tax-mediated activation of the IKK complex requires a phosphorylation step. Our characterization of an in vitro signaling assay system for the mechanism of Tax-mediated activation of the IKK complex with a variety of mutants and inhibitors results in a working model for the biochemical mechanism of Tax-induced activation.  相似文献   
47.
Ionic liquid pretreatment of biomass has been shown to greatly reduce the recalcitrance of lignocellulosic biomass, resulting in improved sugar yields after enzymatic saccharification. However, even under these improved saccharification conditions the cost of enzymes still represents a significant proportion of the total cost of producing sugars and ultimately fuels from lignocellulosic biomass. Much of the high cost of enzymes is due to the low catalytic efficiency and stability of lignocellulolytic enzymes, especially cellulases, under conditions that include high temperatures and the presence of residual pretreatment chemicals, such as acids, organic solvents, bases, or ionic liquids. Improving the efficiency of the saccharification process on ionic liquid pretreated biomass will facilitate reduced enzyme loading and cost. Thermophilic cellulases have been shown to be stable and active in ionic liquids but their activity is typically at lower levels. Cel5A_Tma, a thermophilic endoglucanase from Thermotoga maritima, is highly active on cellulosic substrates and is stable in ionic liquid environments. Here, our motivation was to engineer mutants of Cel5A_Tma with higher activity on 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) pretreated biomass. We developed a robotic platform to screen a random mutagenesis library of Cel5A_Tma. Twelve mutants with 25–42% improvement in specific activity on carboxymethyl cellulose and up to 30% improvement on ionic-liquid pretreated switchgrass were successfully isolated and characterized from a library of twenty thousand variants. Interestingly, most of the mutations in the improved variants are located distally to the active site on the protein surface and are not directly involved with substrate binding.  相似文献   
48.
Shrubs belonging to Carissa genus (Apocyanaceae family) are potential sources of food, medicine and fuel, yet they are wallowing under obscurity and rarely been exploited. Edibility of the pulpy Carissa fruits is known to only a meagre few. Since antiquity, the stem, root bark, leaves, fruit and seed extracts have been used in folklore medication. Now, the emerging scientific investigations are validating the ethno-medicinal uses of these species. Bioactive compounds which include viz. polyphenolics, flavonoids, flavanones, lignans and sesquiterpenes imparting therapeutic potential to these species have been isolated. In vitro and in vivo studies have shown these species to have antioxidant, analgesic, anti-inflammatory, hypolipidemic, wound healing, antimicroabial, antidiabetic, antiepileptic, anticancer, diuretic, nephrotoxicity amelioration and hepatoprotective activity. This miraculous plant extract has also been effective in the management of veterinary ailments. Apart from the medicinal attributes, this genus also holds promise as a suitable alternative crop for harvesting renewable energy. Micropropagtion is being tried for rapid multiplication of the valuable species. This review summarizes the recent findings for promoting the versatility of this genus.  相似文献   
49.
Determining how species' geographic ranges are governed by current climates and how they will respond to rapid climatic change poses a major biological challenge. Geographic ranges are often spatially fragmented and composed of genetically differentiated populations that are locally adapted to different thermal regimes. Tradeoffs between different aspects of thermal performance, such as between tolerance to high temperature and tolerance to low temperature or between maximal performance and breadth of performance, suggest that the performance of a given population will be a subset of that of the species. Therefore, species-level projections of distribution might overestimate the species' ability to persist at any given location. However, current approaches to modeling distributions often do not consider variation among populations. Here, we estimated genetically-based differences in thermal performance curves for growth among 12 populations of the scarlet monkeyflower, Mimulus cardinalis, a perennial herb of western North America. We inferred the maximum relative growth rate (RGR(max)), temperature optimum (T(opt)), and temperature breadth (T(breadth)) for each population. We used these data to test for tradeoffs in thermal performance, generate mechanistic population-level projections of distribution under current and future climates, and examine how variation in aspects of thermal performance influences forecasts of range shifts. Populations differed significantly in RGR(max) and had variable, but overlapping, estimates of T(opt) and T(breadth). T(opt) declined with latitude and increased with temperature of origin, consistent with tradeoffs between performances at low temperatures versus those at high temperatures. Further, T(breadth) was negatively related to RGR(max), as expected for a specialist-generalist tradeoff. Parameters of the thermal performance curve influenced properties of projected distributions. For both current and future climates, T(opt) was negatively related to latitudinal position, while T(breadth) was positively related to projected range size. The magnitude and direction of range shifts also varied with T(opt) and T(breadth), but sometimes in unexpected ways. For example, the fraction of habitat remaining suitable increased with T(opt) but decreased with T(breadth). Northern limits of all populations were projected to shift north, but the magnitude of shift decreased with T(opt) and increased with T(breadth). Median latitude was projected to shift north for populations with high T(breadth) and low T(opt), but south for populations with low T(breadth) and high T(opt). Distributions inferred by integrating population-level projections did not differ from a species-level projection that ignored variation among populations. However, the species-level approach masked the potential array of divergent responses by populations that might lead to genotypic sorting within the species' range. Thermal performance tradeoffs among populations within the species' range had important, but sometimes counterintuitive, effects on projected responses to climatic change.  相似文献   
50.
The Cys(2)His(2)-type zinc finger is a common DNA binding motif that is widely used in the design of artificial zinc finger proteins. In almost all Cys(2)His(2)-type zinc fingers, position 4 of the α-helical DNA-recognition site is occupied by a Leu residue involved in formation of the minimal hydrophobic core. However, the third zinc finger domain of native Zif268 contains an Arg residue instead of the conserved Leu. Our aim in the present study was to clarify the role of this Arg in the formation of a stable domain structure and in DNA binding by substituting it with a Lys, Leu, or Hgn, which have different terminal side-chain structures. Assessed were the metal binding properties, peptide conformations, and DNA-binding abilities of the mutants. All three mutant finger 3 peptides exhibited conformations and thermal stabilities similar to the wild-type peptide. In DNA-binding assays, the Lys mutant bound to target DNA, though its affinity was lower than that of the wild-type peptide. On the other hand, the Leu and Hgn mutants had no ability to bind DNA, despite the similarity in their secondary structures to the wild-type. Our results demonstrate that, as with the Leu residue, the aliphatic carbon side chain of this Arg residue plays a key role in the formation of a stable zinc finger domain, and its terminal guanidinium group appears to be essential for DNA binding mediated through both electrostatic interaction and hydrogen bonding with DNA phosphate backbone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号