Effect of fructose 1,6-diphosphate (FDP) and carbon tetrachloride (CCl4) were studied individually and in combination on rat endothelial (ET) and smooth muscle cell (SMC) nitric oxide synthase (NOS) activities in vivo, inhibition of ET and SMC NOS activity in CCl4 treated rats was reversed in FDP + CCl4 treated animals. Cellular based NOS activity was significantly increased in FDP treated group of rats when compared to non treated controls. The results suggest a significant increase in NOS in rats treated with a combination of FDP + CCl4 thus overcoming the suppression of NOS exposed to CCl4 alone. 相似文献
We have characterized the biochemical association of two DNA damage-dependent enzymes, poly(ADP-ribose) polymerase-1 (PARP-1) [EC 2.4.2.30] and DNA polymerase beta (pol beta) [2.7.7.7]. We reproducibly observed that pol beta is an efficient covalent target for ADP-ribose polymers under standard conditions of enzymatically catalyzed ADP-ribosylation of betaNAD+ as a substrate. The efficiency of poly(ADP-ribosyl)ation increased as a function of the pol beta and betaNAD+ concentrations. To further characterize the molecular interactions between these two unique polymerases, we also subjected human recombinant PARP-1 to peptide-specific enzymatic degradation with either caspase-3 or caspase-7 in vitro. This proteolytic treatment, commonly referred to as 'a hallmark of apoptosis', generated the two physiologically relevant peptide fragments of PARP-1, e.g., a 24-kDa amino-terminus and an 89-kDa carboxy-terminal domain. Interestingly, co-incubation of the two peptide fragments of PARP-1 with full-length pol beta resulted in their domain-specific molecular association as determined by co-immunoprecipitation and reciprocal immunoblotting. Therefore, our data strongly suggest that, once PARP-1 is proteolyzed by either caspase-3 or caspase-7 during cell death, the specific association of its apoptotic fragments with DNA repair enzymes, such as pol beta, may serve a regulatory molecular role in the execution phase of apoptosis. 相似文献
The complete repertoire of cellular and molecular determinants that influence graft-vs-host disease (GVHD) is not known. Using a well-established murine model of GVHD (B6-->bm12 mice), we sought to elucidate the role of the donor non-T cell compartment and molecular determinants therein in the pathogenesis of GVHD. In this model the acute GVHD-inducing effects of purified B6 wild-type (wt) CD4(+) T cells was inhibited by wt non-T cells in a dose-dependent manner. Paradoxically, unlike the chronic GVHD phenotype observed in bm12 mice transplanted with B6wt unfractionated splenocytes, bm12 recipients of B6ccr2-null unfractionated splenocytes developed acute GVHD and died of IFN-gamma-mediated bone marrow aplasia. This switch from chronic to acute GVHD was associated with increased target organ infiltration of activated CD4(+) T cells as well as enhanced expression of Th1/Th2 cytokines, chemokines, and the antiapoptotic factor bfl1. In vitro, ccr2(-/-) CD4(+) T cells in unfractionated splenocytes underwent significantly less activation-induced cell death than B6wt CD4(+) T cells, providing another potential mechanistic basis along with enhanced expression of bfl1 for the increased numbers of activated T cells in target organs of B6ccr2(-/-) splenocyte-->bm12 mice. Collectively, these findings have important clinical implications, as they implicate the donor non-T cell compartment as a critical regulator of GVHD and suggest that ccr2 expression in this cellular compartment may be an important molecular determinant of activation-induced cell death and GVHD pathogenesis. 相似文献
Different concentrations of ammonium molybdate (10(-7) to 10(-4)M) affected the levels of metabolites in the source and sink organs of the seedlings of C. melo and C. vulgaris and data were recorded at 7, 14 and 21 days after treatment (DAT) of molybdenum (Mo). Reducing and non reducing sugars declined with an increase in concentration of ammonium molybdate from 10(-7) to 10(-4) M. Soluble protein and dry weight of seedlings increased in source at lower concentration (10(-7) M) and gradually decreased in all other concentrations (10(-6), 10(-5) and 10(-4) M). Starch was slightly accumulated in hypocotyl and fresh weight constantly declined with an increase in ammonium molybdate concentration from 10(-7) to 10(-4) M in all the parts of seedlings viz. cotyledon, hypocotyl and roots. Thus molybdenum at higher concentration induced decline in the metabolite levels in source and sink as well as in transporting organs. 相似文献
The extracellular enzyme alginate lyase produced from marine fungus Aspergillus oryzae isolated from brown alga Dictyota dichotoma was purified, partially characterized, and evaluated for its sodium alginate depolymerization abilities. The enzyme characterization
studies have revealed that alginate lyase consisted of two polypeptides with about 45 and 50 kDa each on 10% sodium dodecyl
sulfate polyacrylamide gel electrophoresis and showed 140-fold higher activity than crude enzyme under optimized pH (6.5)
and temperature (35°C) conditions. Zn2+, Mn2+, Cu2+, Mg2+, Co2+ and NaCl were found to enhance the enzyme activity while (Ca2+, Cd2+, Fe2+, Hg2+, Sr2+, Ni2+), glutathione, and metal chelators (ethylenediaminetetraacetic acid and ethylene glycol tetraacetic acid) suppressed the
activity. Fourier transform infrared and thin-layer chromatography analysis of depolymerized sodium alginate indicated the
enzyme specificity for cleaving at the β-1,4 glycosidic bond between polyM and polyG blocks of sodium alginate and therefore
resulted in estimation of relatively higher polyM content than polyG. Comparison of chemical shifts in 13C nuclear magnetic resonance spectra of both polyM and polyG from that of sodium alginate also showed further evidence for
enzymatic depolymerization of sodium alginate. 相似文献
Phytohormones act as chemical messengers and, under a complex regulation, allow plants to sustain biotic and abiotic stresses. Thus, phytohormones are known for their regulatory role in plant growth and development. Heavy metals (HMs) play an important role in metabolism and have roles in plant growth and development as micronutrients. However, at a level above threshold, these HMs act as contaminants and pose a worldwide environmental threat. Thus, finding eco-friendly and economical deliverables to tackle this problem is a priority. In addition to physicochemical methods, exogenous application of phytohormones, i.e., auxins, cytokinins, and gibberellins, can positively influence the regulation of the ascorbate–glutathione cycle, transpiration rate, cell division, and the activities of nitrogen metabolism and assimilation, which improve plant growth activity. Brassinosteroids, ethylene and salicylic acid have been reported to enhance the level of the anti-oxidant system, decrease levels of ROS, lipid peroxidation and improve photosynthesis in plants, when applied exogenously under a HM effect. There is a crosstalk between phytohormones which is activated upon exogenous application. Research suggests that plants are primed by phytohormones for stress tolerance. Chemical priming has provided good results in plant physiology and stress adaptation, and phytohormone priming is underway. We have reviewed promising phytohormones, which can potentially confer enhanced tolerance when used exogenously. Exogenous application of phytohormones may increase plant performance under HM stress and can be used for agro-ecological benefits under environmental conditions with high HMs level.