首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1368篇
  免费   67篇
  国内免费   3篇
  2023年   6篇
  2022年   18篇
  2021年   42篇
  2020年   19篇
  2019年   17篇
  2018年   26篇
  2017年   15篇
  2016年   50篇
  2015年   59篇
  2014年   70篇
  2013年   88篇
  2012年   126篇
  2011年   125篇
  2010年   80篇
  2009年   45篇
  2008年   88篇
  2007年   83篇
  2006年   57篇
  2005年   42篇
  2004年   76篇
  2003年   45篇
  2002年   42篇
  2001年   24篇
  2000年   27篇
  1999年   13篇
  1998年   7篇
  1997年   5篇
  1996年   7篇
  1995年   7篇
  1994年   8篇
  1993年   5篇
  1992年   18篇
  1991年   13篇
  1990年   6篇
  1989年   8篇
  1988年   6篇
  1987年   12篇
  1986年   8篇
  1985年   10篇
  1984年   4篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1974年   4篇
  1971年   2篇
  1969年   2篇
  1967年   2篇
  1966年   2篇
排序方式: 共有1438条查询结果,搜索用时 46 毫秒
961.
Pheromone eluting oligolactide (OLA) microcapsules immobilized in electrospun biodegradable polyester nanofibers were obtained by electrospinning of aqueous dispersions of the microcapsules. OLA was prepared by conventional melt polycondensation of lactic acid. Following the protocol of the solvent displacement method, OLA was dissolved in acetone and mixed with Brij S20 and the pheromone of the European grape vine moth, Lobesia Botrana, (E,Z)-7,9-dodecadien-l-yl acetate (DA). Up to 32 wt % of this mixture could be dispersed in water with colloidal stability of several weeks without any sedimentation. Without DA as well as OLA, no stable dispersions of OLA in water were obtained. Replacement of DA by classical hydrophobes typically used for miniemulsions did not yield stable dispersions, but the addition of octyl acetate, which shows structural similarity to DA, yielded stable dispersions in water up to 10 wt %. Dispersions of OLA/DA were successfully electrospun in combination with an aqueous dispersion of a biodegradable block copolyester resulting in water-stable nanofibers containing OLA/DA microcapsules. Release of DA from microcapsules and fibers was retarded in comparison with non-encapsulated DA, as shown by model studies.  相似文献   
962.
963.
Neutrophil abscess formation is critical in innate immunity against many pathogens. Here, the mechanism of neutrophil abscess formation was investigated using a mouse model of Staphylococcus aureus cutaneous infection. Gene expression analysis and in vivo multispectral noninvasive imaging during the S. aureus infection revealed a strong functional and temporal association between neutrophil recruitment and IL-1β/IL-1R activation. Unexpectedly, neutrophils but not monocytes/macrophages or other MHCII-expressing antigen presenting cells were the predominant source of IL-1β at the site of infection. Furthermore, neutrophil-derived IL-1β was essential for host defense since adoptive transfer of IL-1β-expressing neutrophils was sufficient to restore the impaired neutrophil abscess formation in S. aureus-infected IL-1β-deficient mice. S. aureus-induced IL-1β production by neutrophils required TLR2, NOD2, FPR1 and the ASC/NLRP3 inflammasome in an α-toxin-dependent mechanism. Taken together, IL-1β and neutrophil abscess formation during an infection are functionally, temporally and spatially linked as a consequence of direct IL-1β production by neutrophils.  相似文献   
964.
965.
966.
967.
Mixed-linkage glucan (MLG) is a cell wall polysaccharide containing a backbone of unbranched (1,3)- and (1,4)-linked β-glucosyl residues. Based on its occurrence in plants and chemical characteristics, MLG has primarily been associated with the regulation of cell wall expansion due to its high and transient accumulation in young, expanding tissues. The Cellulose synthase-like F (CslF) subfamily of glycosyltransferases has previously been implicated in mediating the biosynthesis of this polymer. We confirmed that the rice (Oryza sativa) CslF6 gene mediates the biosynthesis of MLG by overexpressing it in Nicotiana benthamiana. Rice cslf6 knockout mutants show a slight decrease in height and stem diameter but otherwise grew normally during vegetative development. However, cslf6 mutants display a drastic decrease in MLG content (97% reduction in coleoptiles and virtually undetectable in other tissues). Immunodetection with an anti-MLG monoclonal antibody revealed that the coleoptiles and leaves retain trace amounts of MLG only in specific cell types such as sclerenchyma fibers. These results correlate with the absence of endogenous MLG synthase activity in mutant seedlings and 4-week-old sheaths. Mutant cell walls are weaker in mature stems but not seedlings, and more brittle in both stems and seedlings, compared to wild type. Mutants also display lesion mimic phenotypes in leaves, which correlates with enhanced defense-related gene expression and enhanced disease resistance. Taken together, our results underline a weaker role of MLG in cell expansion than previously thought, and highlight a structural role for MLG in nonexpanding, mature stem tissues in rice.  相似文献   
968.
Encapsulation of recombinant Escherichia coli cells expressing a biocatalyst has the potential to produce stable, long-lasting enzyme activity that can be used for numerous applications. The current study describes the use of this technology with recombinant E. coli cells expressing the atrazine-dechlorinating enzyme AtzA in a silica/polymer porous gel. This novel recombinant enzyme-based method utilizes both adsorption and degradation to remove atrazine from water. A combination of silica nanoparticles (Ludox TM40), alkoxides, and an organic polymer was used to synthesize a porous gel. Gel curing temperatures of 23 or 45 °C were used either to maintain cell viability or to render the cells non-viable, respectively. The enzymatic activity of the encapsulated viable and non-viable cells was high and extremely stable over the time period analyzed. At room temperature, the encapsulated non-viable cells maintained a specific activity between (0.44 ± 0.06) μmol/g/min and (0.66 ± 0.12) μmol/g/min for up to 4 months, comparing well with free, viable cell-specific activities (0.61 ± 0.04 μmol/g/min). Gels cured at 45 °C had excellent structural rigidity and contained few viable cells, making these gels potentially compatible with water treatment facility applications. When encapsulated, non-viable cells were assayed at 4 °C, the activity increased threefold over free cells, potentially due to differences in lipid membranes as shown by FTIR spectroscopy and electron microscopy.  相似文献   
969.
Pham E  Wong SS  Nagaraj S  Truong K 《Cell calcium》2012,51(5):418-425
Elevations of cytosolic Ca2+ from the endoplasmic reticulum (ER) regulate a diverse range of cellular processes. When these luminal stores become depleted, the transmembrane ER protein Stim1 oligomerizes and translocates within the ER membrane to puncta junctions to couple with Orai1 channels, activating store-operated calcium entry (SOCE). Stim1 oligomerization and puncta formation have generally been associated with its luminal domains, however, studies have implicated that the cytoplasmic domains may contribute to this oligomerization. Studies have also suggested that intermediate or regulating elements may be required to fine-tune puncta formation and activation of SOCE. Here we made fusion proteins of Stim1 and Orai1 with FRB and FKBP12 domains that associate in the presence of rapamycin. Rapamycin-induced coupling of Stim1 to Stim1, Orai1 to Orai1 and Stim1 to Orai1 was found to be insufficient for puncta formation. Rapamycin was then used to recruit the cytosolic Ca2+ buffer protein parvalbumin (Pav) to Stim1 in order to buffer the local cytosolic Ca2+ near the ER membrane. Interestingly, Pav buffering near the ER caused puncta formation that was indistinguishable from those caused by thapsigargin. Our results suggest that Stim1 oligomerization and puncta formation may be additionally regulated either by local Ca2+ levels near the ER membrane or by as yet unidentified Ca2+-dependent proteins interacting with the cytoplasmic domains of Stim1.  相似文献   
970.
Precise dose delivery to malignant tissue in radiotherapy is of paramount importance for treatment efficacy while minimizing morbidity of surrounding normal tissues. Current conventional imaging techniques, such as magnetic resonance imaging (MRI) and computerized tomography (CT), are used to define the three-dimensional shape and volume of the tumor for radiation therapy. In many cases, these radiographic imaging (RI) techniques are ambiguous or provide limited information with regard to tumor margins and histopathology. Molecular imaging (MI) modalities, such as positron emission tomography (PET) and single photon-emission computed-tomography (SPECT) that can characterize tumor tissue, are rapidly becoming routine in radiation therapy. However, their inherent low spatial resolution impedes tumor delineation for the purposes of radiation treatment planning. This review will focus on applications of nanotechnology to synergize imaging modalities in order to accurately highlight, as well as subsequently target, tumor cells. Furthermore, using such nano-agents for imaging, simultaneous coupling of novel therapeutics including radiosensitizers can be delivered specifically to the tumor to maximize tumor cell killing while sparing normal tissue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号