首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   9篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   7篇
  2014年   7篇
  2013年   12篇
  2012年   19篇
  2011年   7篇
  2010年   6篇
  2009年   7篇
  2008年   7篇
  2007年   7篇
  2006年   7篇
  2005年   3篇
  2004年   3篇
  2003年   5篇
  2002年   5篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1988年   1篇
  1984年   3篇
  1982年   1篇
  1980年   1篇
  1975年   2篇
  1972年   1篇
  1969年   1篇
  1965年   2篇
  1962年   1篇
  1961年   1篇
  1955年   1篇
  1943年   2篇
  1940年   1篇
  1939年   2篇
  1938年   1篇
  1937年   1篇
  1925年   1篇
  1896年   1篇
  1894年   1篇
排序方式: 共有144条查询结果,搜索用时 46 毫秒
81.
82.
Skp2 is the substrate recognition subunit of the multi-subunit ubiquitin ligase SCF(Skp2). It consists of an N-terminal F-box domain that binds to the Skp1 subunit and thereby tethers it to the SCF catalytic core, and an elongated C-terminal domain comprising ten Leucine-rich repeats (LRR) that binds the substrate. A small accessory protein, Cks1, is required for SCF(Skp2) to target certain substrates, including the Cyclin-dependent kinase inhibitor p27. Here we have used hydrogen/deuterium exchange monitored by mass spectrometry to investigate the mode of action of Cks1 on SCF(Skp2). We show that complex formation between Cks1 and Skp2 causes conformational changes in both proteins in regions distant from the respective binding sites. We find that Skp2 interacts with a localised region of Cks1 but the interaction causes a global change in the hydrogen exchange behaviour of Cks1. Also, whilst Cks1 binds to the most C-terminal LRRs of the elongated Skp2 molecule, the interaction induces conformational changes at the distant N-terminal LRRs, close to the F-box motif. Further, binding of Cks1 to Skp2 significantly stabilises the interaction between Skp2 and Skp1. The results reveal that the C-terminal substrate recognition region of Skp2 is coupled to the N-terminal Skp1-binding region and thereby to the SCF catalytic core; this result adds to the model proposed previously that, whilst the principal function of the F-box protein is to recruit the substrate, an additional function may be to help position the substrate in an optimal way within the SCF complex to enable efficient ubiquitin transfer.  相似文献   
83.
Although Harderian glands are especially large in rodents, many features of this retroocular gland, including its development and function, are not well established. Protein phosphatase 2A (PP2A) is a family of heterotrimeric enzymes expressed in this gland. PP2A substrate specificity is determined by regulatory subunits with leucine 309 of the catalytic subunit playing a crucial role in the recruitment of regulatory subunits into the complex in vitro. Here we expressed an L309A mutant catalytic subunit in Harderian gland of transgenic mice. We found a delayed postnatal development and hypoplasia of the gland, causing enophthalmos. To determine why expression of the L309A mutant caused this phenotype, we determined the PP2A subunit composition. We found an altered subunit composition in the transgenic gland that was accompanied by pronounced changes of proteins regulating cell adhesion. Specifically, cadherin and beta-catenin were dramatically reduced and shifted to the cytosol. Furthermore, we found an inactivating phosphorylation of the cadherin-directed glycogen synthase kinase-3beta. In conclusion, the carboxy-terminal leucine L309 of the PP2A catalytic subunit determines PP2A heterotrimer composition in vivo. Moreover, our data demonstrate that PP2A subunit composition plays a crucial role in regulating cell adhesion and as a consequence in the development of the Harderian gland.  相似文献   
84.
Zn(2+) is thought to modulate neurotransmission by affecting currents mediated by ligand-gated ion channels and transmitter reuptake by Na(+)-dependent transporter systems. Here, we examined the in vivo relevance of Zn(2+) neuromodulation by producing knockin mice carrying the mutation D80A in the glycine receptor (GlyR) alpha1 subunit gene (Glra1). This substitution selectively eliminates the potentiating effect of Zn(2+) on GlyR currents. Mice homozygous for Glra1(D80A) develop a severe neuromotor phenotype postnatally that resembles forms of human hyperekplexia (startle disease) caused by mutations in GlyR genes. In spinal neurons and brainstem slices from Glra1(D80A) mice, GlyR expression, synaptic localization, and basal glycinergic transmission were normal; however, potentiation of spontaneous glycinergic currents by Zn(2+) was significantly impaired. Thus, the hyperekplexia phenotype of Glra1(D80A) mice is due to the loss of Zn(2+) potentiation of alpha1 subunit containing GlyRs, indicating that synaptic Zn(2+) is essential for proper in vivo functioning of glycinergic neurotransmission.  相似文献   
85.
Levinson NM  Seeliger MA  Cole PA  Kuriyan J 《Cell》2008,134(1):124-134
The catalytic activity of the Src family of tyrosine kinases is suppressed by phosphorylation on a tyrosine residue located near the C terminus (Tyr 527 in c-Src), which is catalyzed by C-terminal Src Kinase (Csk). Given the promiscuity of most tyrosine kinases, it is remarkable that the C-terminal tails of the Src family kinases are the only known targets of Csk. We have determined the crystal structure of a complex between the kinase domains of Csk and c-Src at 2.9 A resolution, revealing that interactions between these kinases position the C-terminal tail of c-Src at the edge of the active site of Csk. Csk cannot phosphorylate substrates that lack this docking mechanism because the conventional substrate binding site used by most tyrosine kinases to recognize substrates is destabilized in Csk by a deletion in the activation loop.  相似文献   
86.
Summary Polysaccharide fractions were extracted with 7.5% sulphosalicylic acid from defatted cell walls of 43 strains of nocardiae. All the polysaccharides, except those ofN. turbata, revealed chromatographically glucosamine, galactose, glucose and arabinose. Rhamnose was only found in the fractions isolated from some strains.The complement-fixation test with the polysaccharide fractions and anti-cell-wall sera allowed to distinguish four serological groups and 21 types among the strains examined. A method and a pattern of the serological classification of nocardiae has been presented.This work was partly conducted under a Von Humboldt Associate-Professor Fellowship in the Hygiene-Institute, University of Bonn, in 1963.Part of this paper was read at the meeting of the International Society of Human and Animal Mycology during the International Botanical Congress in Edinburgh, Scotland, 1964.  相似文献   
87.
It is generally expected that 2-pore domain K+ (K2P) channels are open or outward rectifiers in asymmetric physiological K+ gradients, following the Goldman-Hodgkin-Katz (GHK) current equation. Although cloned K2P channels have been extensively studied, their current-voltage (I-V) relationships are not precisely characterized and previous definitions are contradictory. Here we study all the functional channels from 6 mammalian K2P subfamilies in transfected Chinese hamster ovary cells with patch-clamp technique, and examine whether their I-V relationships are described by the GHK current equation. K2P channels display 2 distinct types of I-V curves in asymmetric physiological K+ gradients. Two K2P isoforms in the TWIK subfamily conduct large inward K+ currents and have a nearly linear I-V curve. Ten isoforms from 5 other K2P subfamilies conduct small inward K+ currents and exhibit open rectification, but fits with the GHK current equation cannot precisely reveal the differences in rectification among K2P channels. The Rectification Index, a ratio of limiting I-V slopes for outward and inward currents, is used to quantitatively describe open rectification of each K2P isoform, which is previously qualitatively defined as strong or weak open rectification. These results systematically and precisely classify K2P channels and suggest that TWIK K+ channels have a unique feature in regulating cellular function.  相似文献   
88.

Introduction

In many patients with rheumatoid arthritis (RA) subclinical disease activity can be detected with ultrasound (US), especially using power Doppler US (PDUS). However, PDUS may be highly dependent on the type of machine. This could create problems both in clinical trials and in daily clinical practice. To clarify how the PDUS signal differs between machines we created a microvessel flow phantom.

Methods

The flow phantom contained three microvessels (150, 1000, 2000 microns). A syringe pump was used to generate flows. Five US machines were used. Settings were optimised to assess the lowest detectable flow for each US machine.

Results

The minimal detectable flow velocities showed very large differences between the machines. Only two of the machines may be able to detect the very low flows in the capillaries of inflamed joints. There was no clear relation with price. One of the lower-end machines actually performed best in all three vessel sizes.

Conclusions

We created a flow phantom to test the sensitivity of US machines to very low flows in small vessels. The sensitivity of the power Doppler modalities of 5 different machines was very different. The differences found between the machines are probably caused by fundamental differences in processing of the PD signal or internal settings inaccessible to users. Machines considered for PDUS assessment of RA patients should be tested using a flow phantom similar to ours. Within studies, only a single machine type should be used.  相似文献   
89.
Silencing of tumor suppressor genes (TSGs) by DNA promoter hypermethylation is an early event in carcinogenesis and a potential target for personalized cancer treatment. In head and neck cancer, little is known about the role of promoter hypermethylation in survival. Using methylation specific multiplex ligation-dependent probe amplification (MS-MLPA) we investigated the role of promoter hypermethylation of 24 well-described genes (some of which are classic TSGs), which are frequently methylated in different cancer types, in 166 HPV-negative early oral squamous cell carcinomas (OSCC), and 51 HPV-negative early oropharyngeal squamous cell carcinomas (OPSCC) in relation to clinicopathological features and survival. Early OSCC showed frequent promoter hypermethylation in RARB (31% of cases), CHFR (20%), CDH13 (13%), DAPK1 (12%), and APC (10%). More hypermethylation (≥ 2 genes) independently correlated with improved disease specific survival (hazard ratio 0.17, P = 0.014) in early OSCC and could therefore be used as prognostic biomarker. Early OPSCCs showed more hypermethylation of CDH13 (58%), TP73 (14%), and total hypermethylated genes. Hypermethylation of two or more genes has a significantly different effect on survival in OPSCC compared with OSCC, with a trend toward worse instead of better survival. This could have a biological explanation, which deserves further investigation and could possibly lead to more stratified treatment in the future.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号