首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31304篇
  免费   2758篇
  国内免费   22篇
  2023年   143篇
  2022年   328篇
  2021年   776篇
  2020年   415篇
  2019年   549篇
  2018年   655篇
  2017年   538篇
  2016年   966篇
  2015年   1631篇
  2014年   1709篇
  2013年   2001篇
  2012年   2635篇
  2011年   2679篇
  2010年   1632篇
  2009年   1353篇
  2008年   2010篇
  2007年   1985篇
  2006年   1930篇
  2005年   1655篇
  2004年   1679篇
  2003年   1476篇
  2002年   1439篇
  2001年   275篇
  2000年   201篇
  1999年   264篇
  1998年   298篇
  1997年   214篇
  1996年   197篇
  1995年   167篇
  1994年   149篇
  1993年   143篇
  1992年   114篇
  1991年   140篇
  1990年   102篇
  1989年   92篇
  1988年   82篇
  1987年   66篇
  1986年   82篇
  1985年   89篇
  1984年   92篇
  1983年   92篇
  1982年   111篇
  1981年   110篇
  1980年   87篇
  1979年   60篇
  1978年   45篇
  1977年   45篇
  1976年   47篇
  1975年   46篇
  1974年   46篇
排序方式: 共有10000条查询结果,搜索用时 218 毫秒
231.
232.
Vegetation cover creates competing effects on land surface temperature: it typically cools through enhancing energy dissipation and warms via decreasing surface albedo. Global vegetation has been previously found to overall net cool land surfaces with cooling contributions from temperate and tropical vegetation and warming contributions from boreal vegetation. Recent studies suggest that dryland vegetation across the tropics strongly contributes to this global net cooling feedback. However, observation-based vegetation-temperature interaction studies have been limited in the tropics, especially in their widespread drylands. Theoretical considerations also call into question the ability of dryland vegetation to strongly cool the surface under low water availability. Here, we use satellite observations to investigate how tropical vegetation cover influences the surface energy balance. We find that while increased vegetation cover would impart net cooling feedbacks across the tropics, net vegetal cooling effects are subdued in drylands. Using observations, we determine that dryland plants have less ability to cool the surface due to their cooling pathways being reduced by aridity, overall less efficient dissipation of turbulent energy, and their tendency to strongly increase solar radiation absorption. As a result, while proportional greening across the tropics would create an overall biophysical cooling feedback, dryland tropical vegetation reduces the overall tropical surface cooling magnitude by at least 14%, instead of enhancing cooling as suggested by previous global studies.  相似文献   
233.
Wheat is a major crop worldwide, mainly cultivated for human consumption and animal feed. Grain quality is paramount in determining its value and downstream use. While we know that climate change threatens global crop yields, a better understanding of impacts on wheat end-use quality is also critical. Combining quantitative genetics with climate model outputs, we investigated UK-wide trends in genotypic adaptation for wheat quality traits. In our approach, we augmented genomic prediction models with environmental characterisation of field trials to predict trait values and climate effects in historical field trial data between 2001 and 2020. Addition of environmental covariates, such as temperature and rainfall, successfully enabled prediction of genotype by environment interactions (G × E), and increased prediction accuracy of most traits for new genotypes in new year cross validation. We then extended predictions from these models to much larger numbers of simulated environments using climate scenarios projected under Representative Concentration Pathways 8.5 for 2050–2069. We found geographically varying climate change impacts on wheat quality due to contrasting associations between specific weather covariables and quality traits across the UK. Notably, negative impacts on quality traits were predicted in the East of the UK due to increased summer temperatures while the climate in the North and South-west may become more favourable with increased summer temperatures. Furthermore, by projecting 167,040 simulated future genotype–environment combinations, we found only limited potential for breeding to exploit predictable G × E to mitigate year-to-year environmental variability for most traits except Hagberg falling number. This suggests low adaptability of current UK wheat germplasm across future UK climates. More generally, approaches demonstrated here will be critical to enable adaptation of global crops to near-term climate change.  相似文献   
234.
Climate warming increases tree mortality which will require sufficient reproduction to ensure population viability. However, the response of tree reproduction to climate change remains poorly understood. Warming can reduce synchrony and interannual variability of seed production (“masting breakdown”) which can increase seed predation and decrease pollination efficiency in trees. Here, using 40 years of observations of individual seed production in European beech (Fagus sylvatica), we showed that masting breakdown results in declining viable seed production over time, in contrast to the positive trend apparent in raw seed count data. Furthermore, tree size modulates the consequences of masting breakdown on viable seed production. While seed predation increased over time mainly in small trees, pollination efficiency disproportionately decreased in larger individuals. Consequently, fecundity declined over time across all size classes, but the overall effect was greatest in large trees. Our study showed that a fundamental biological relationship—correlation between tree size and viable seed production—has been reversed as the climate has warmed. That reversal has diverse consequences for forest dynamics; including for stand- and biogeographical-level dynamics of forest regeneration. The tree size effects suggest management options to increase forest resilience under changing climates.  相似文献   
235.
The krill surplus hypothesis of unlimited prey resources available for Antarctic predators due to commercial whaling in the 20th century has remained largely untested since the 1970s. Rapid warming of the Western Antarctic Peninsula (WAP) over the past 50 years has resulted in decreased seasonal ice cover and a reduction of krill. The latter is being exacerbated by a commercial krill fishery in the region. Despite this, humpback whale populations have increased but may be at a threshold for growth based on these human-induced changes. Understanding how climate-mediated variation in prey availability influences humpback whale population dynamics is critical for focused management and conservation actions. Using an 8-year dataset (2013–2020), we show that inter-annual humpback whale pregnancy rates, as determined from skin-blubber biopsy samples (n = 616), are positively correlated with krill availability and fluctuations in ice cover in the previous year. Pregnancy rates showed significant inter-annual variability, between 29% and 86%. Our results indicate that krill availability is in fact limiting and affecting reproductive rates, in contrast to the krill surplus hypothesis. This suggests that this population of humpback whales may be at a threshold for population growth due to prey limitations. As a result, continued warming and increased fishing along the WAP, which continue to reduce krill stocks, will likely impact this humpback whale population and other krill predators in the region. Humpback whales are sentinel species of ecosystem health, and changes in pregnancy rates can provide quantifiable signals of the impact of environmental change at the population level. Our findings must be considered paramount in developing new and more restrictive conservation and management plans for the Antarctic marine ecosystem and minimizing the negative impacts of human activities in the region.  相似文献   
236.
Globally, climate is changing rapidly, which causes shifts in many species' distributions, stressing the need to understand their response to changing environmental conditions to inform conservation and management. Northern latitudes are expected to experience strongest changes in climate, with milder winters and decreasing snow cover. The wolverine (Gulo gulo) is a circumpolar, threatened carnivore distributed in northern tundra, boreal, and subboreal habitats. Previous studies have suggested that wolverine distribution and reproduction are constrained by a strong association with persistent spring snow cover. We assess this hypothesis by relating spatial distribution of 1589 reproductive events, a fitness-related proxy for female reproduction and survival, to snow cover over two decades. Wolverine distribution has increased and number of reproductive events increased 20 times in areas lacking spring snow cover during our study period, despite low monitoring effort where snow is sparse. Thus, the relationship between reproductive events and persistent spring snow cover weakened during this period. These findings show that wolverine reproductive success and hence distribution are less dependent on spring snow cover than expected. This has important implications for projections of future habitat availability, and thus distribution, of this threatened species. Our study also illustrates how past persecution, or other factors, that have restricted species distribution to remote areas can mask actual effects of environmental parameters, whose importance reveals when populations expand beyond previously restricted ranges. Overwhelming evidence shows that climate change is affecting many species and ecological processes, but forecasting potential consequences on a given species requires longitudinal data to revisit hypotheses and reassess the direction and magnitude of climate effects with new data. This is especially important for conservation-oriented management of species inhabiting dynamic systems where environmental factors and human activities interact, a common scenario for many species in different ecosystems around the globe.  相似文献   
237.
238.
239.

Aim

The distribution of mesoplankton communities has been poorly studied at global scale, especially from in situ instruments. This study aims to (1) describe the global distribution of mesoplankton communities in relation to their environment and (2) assess the ability of various environmental-based ocean regionalizations to explain the distribution of these communities.

Location

Global ocean, 0–500 m depth.

Time Period

2008–2019.

Major Taxa Studied

Twenty-eight groups of large mesoplanktonic and macroplanktonic organisms, covering Metazoa, Rhizaria and Cyanobacteria.

Methods

From a global data set of 2500 vertical profiles making use of the Underwater Vision Profiler 5 (UVP5), an in situ imaging instrument, we studied the global distribution of large (>600 μm) mesoplanktonic organisms. Among the 6.8 million imaged objects, 330,000 were large zooplanktonic organisms and phytoplankton colonies, the rest consisting of marine snow particles. Multivariate ordination (PCA) and clustering were used to describe patterns in community composition, while comparison with existing regionalizations was performed with regression methods (RDA).

Results

Within the observed size range, epipelagic plankton communities were Trichodesmium-enriched in the intertropical Atlantic, Copepoda-enriched at high latitudes and in upwelling areas, and Rhizaria-enriched in oligotrophic areas. In the mesopelagic layer, Copepoda-enriched communities were also found at high latitudes and in the Atlantic Ocean, while Rhizaria-enriched communities prevailed in the Peruvian upwelling system and a few mixed communities were found elsewhere. The comparison between the distribution of these communities and a set of existing regionalizations of the ocean suggested that the structure of plankton communities described above is mostly driven by basin-level environmental conditions.

Main Conclusions

In both layers, three types of plankton communities emerged and seemed to be mostly driven by regional environmental conditions. This work sheds light on the role not only of metazoans, but also of unexpected large protists and cyanobacteria in structuring large mesoplankton communities.  相似文献   
240.
Epidermal growth factor (EGF) stimulated the phosphorylation of connexin43 (Cx43) in WB cells as evidenced by the formation of multiple irnmunoreactive Cx43 proteins of higher molecular mass which were abolished by treatment with alkaline phosphatase. Phosphorylation of Cx43 occurred within 10 min of EGF stimulation, was sustained for 1 h, and was associated with almost complete inhibition of gap junctional communication in these cells. EGF-induced phosphorylation and communication inhibition were retained in cells pretreated with phorbol 12-myristate 13-acetate (PMA) to deplete protein kinase C. These results show that the EGF inhibition of communication is tightly linked to protein kinase C-independent phosphorylation of Cx43. Further, Cx43 phosphorylated in the presence of EGF did not react with phosphotyrosine antibodies and in 32Pi incorporation experiments was shown to contain only phosphoserine indicating that the tyrosine kinase activity of the EGF receptor was not directly involved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号