首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   591篇
  免费   58篇
  649篇
  2023年   8篇
  2022年   5篇
  2021年   16篇
  2020年   11篇
  2019年   12篇
  2018年   14篇
  2017年   18篇
  2016年   23篇
  2015年   39篇
  2014年   36篇
  2013年   57篇
  2012年   62篇
  2011年   62篇
  2010年   41篇
  2009年   31篇
  2008年   43篇
  2007年   41篇
  2006年   31篇
  2005年   25篇
  2004年   33篇
  2003年   24篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1998年   3篇
  1988年   1篇
排序方式: 共有649条查询结果,搜索用时 0 毫秒
131.
132.
133.
Several individual miRNAs (miRs) have been implicated as potent regulators of important processes during normal and malignant hematopoiesis. In addition, many miRs have been shown to fine-tune intricate molecular networks, in concert with other regulatory elements. In order to study hematopoietic networks as a whole, we first created a map of global miR expression during early murine hematopoiesis. Next, we determined the copy number per cell for each miR in each of the examined stem and progenitor cell types. As data is emerging indicating that miRs function robustly mainly when they are expressed above a certain threshold (∼100 copies per cell), our database provides a resource for determining which miRs are expressed at a potentially functional level in each cell type. Finally, we combine our miR expression map with matched mRNA expression data and external prediction algorithms, using a Bayesian modeling approach to create a global landscape of predicted miR-mRNA interactions within each of these hematopoietic stem and progenitor cell subsets. This approach implicates several interaction networks comprising a “stemness” signature in the most primitive hematopoietic stem cell (HSC) populations, as well as “myeloid” patterns associated with two branches of myeloid development.  相似文献   
134.
135.
Understanding the mechanisms underlying species distributions and coexistence is both a priority and a challenge for biodiversity hotspots such as the Neotropics. Here, we highlight that Müllerian mimicry, where defended prey species display similar warning signals, is key to the maintenance of biodiversity in the c. 400 species of the Neotropical butterfly tribe Ithomiini (Nymphalidae: Danainae). We show that mimicry drives large-scale spatial association among phenotypically similar species, providing new empirical evidence for the validity of Müller's model at a macroecological scale. Additionally, we show that mimetic interactions drive the evolutionary convergence of species climatic niche, thereby strengthening the co-occurrence of co-mimetic species. This study provides new insights into the importance of mutualistic interactions in shaping both niche evolution and species assemblages at large spatial scales. Critically, in the context of climate change, our results highlight the vulnerability to extinction cascades of such adaptively assembled communities tied by positive interactions.  相似文献   
136.
137.
Microtubules are cylindrical organelles that play critical roles in cell division. Their subunit protein, tubulin, is a target for various antitumor drugs. Tubulin exists as various forms, known as isotypes. In most normal cells, tubulin occurs only in the cytosol and not in the nucleus. However, we have recently reported the finding of the beta(II) isotype of tubulin in the nuclei of cultured rat kidney mesangial cells. Mesangial cells, unlike most normal cell lines, have the ability to proliferate rapidly in culture. In efforts to determine whether nuclear beta(II)-tubulin occurred in other cell lines, we examined the distribution of the beta(I), beta(II), and beta(IV) mammalian tubulin isotypes in a variety of normal and cancer human cell lines by immunofluorescence microscopy. We have found that, in the normal cell lines, all three isotypes are present only in the cytoplasm. However, the beta(II) isotype of tubulin is located not only in the cytoplasm, but also in the nuclei of the following cell lines: LNCaP prostate carcinoma, MCF-7, MDA-MB-231, MDA-MB-435, and Calc18 breast carcinoma, C6 and T98G glioma, and HeLa cells. In contrast, the beta(I) and beta(IV) isotypes, which are also synthesized in cancer cells, are not localized to the nucleus but are restricted to the cytoplasm. We have also seen beta(II) in breast cancer excisions. In most of these cells, beta(II) appears to be concentrated in the nucleoli. These results suggest that transformation may lead to localization of beta(II)-tubulin in cell nuclei, serving an as yet unknown function, and that nuclear beta(II) may be a useful marker for detection of tumor cells.  相似文献   
138.
Insulin-like growth factor-1 (IGF-1) plays a critical role in the development of the growing skeleton by establishing both longitudinal and transverse bone accrual. IGF-1 has also been implicated in the maintenance of bone mass during late adulthood and aging, as decreases in serum IGF-1 levels appear to correlate with decreases in bone mineral density (BMD). Although informative, mouse models to date have been unable to separate the temporal effects of IGF-1 depletion on skeletal development. To address this problem, we performed a skeletal characterization of the inducible LID mouse (iLID), in which serum IGF-1 levels are depleted at selected ages. We found that depletion of serum IGF-1 in male iLID mice prior to adulthood (4 weeks) decreased trabecular bone architecture and significantly reduced transverse cortical bone properties (Ct.Ar, Ct.Th) by 16 weeks (adulthood). Likewise, depletion of serum IGF-1 in iLID males at 8 weeks of age, resulted in significantly reduced transverse cortical bone properties (Ct.Ar, Ct.Th) by 32 weeks (late adulthood), but had no effect on trabecular bone architecture. In contrast, depletion of serum IGF-1 after peak bone acquisition (at 16 weeks) resulted in enhancement of trabecular bone architecture, but no significant changes in cortical bone properties by 32 weeks as compared to controls. These results indicate that while serum IGF-1 is essential for bone accrual during the postnatal growth phase, depletion of IGF-1 after peak bone acquisition (16 weeks) is compartment-specific and does not have a detrimental effect on cortical bone mass in the older adult mouse.  相似文献   
139.
140.
Minimally invasive fetal interventions require accurate imaging from inside the uterine cavity. Twin‐to‐twin transfusion syndrome (TTTS), a condition considered in this study, occurs from abnormal vascular anastomoses in the placenta that allow blood to flow unevenly between the fetuses. Currently, TTTS is treated fetoscopically by identifying the anastomosing vessels, and then performing laser photocoagulation. However, white light fetoscopy provides limited visibility of placental vasculature, which can lead to missed anastomoses or incomplete photocoagulation. Photoacoustic (PA) imaging is an alternative imaging method that provides contrast for hemoglobin, and in this study, two PA systems were used to visualize chorionic (fetal) superficial and subsurface vasculature in human placentas. The first system comprised an optical parametric oscillator for PA excitation and a 2D Fabry‐Pérot cavity ultrasound sensor; the second, light emitting diode arrays and a 1D clinical linear‐array ultrasound imaging probe. Volumetric photoacoustic images were acquired from ex vivo normal term and TTTS‐treated placentas. It was shown that superficial and subsurface branching blood vessels could be visualized to depths of approximately 7 mm, and that ablated tissue yielded negative image contrast. This study demonstrated the strong potential of PA imaging to guide minimally invasive fetal therapies.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号