首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   57篇
  2023年   8篇
  2022年   5篇
  2021年   16篇
  2020年   11篇
  2019年   12篇
  2018年   14篇
  2017年   18篇
  2016年   23篇
  2015年   39篇
  2014年   36篇
  2013年   57篇
  2012年   62篇
  2011年   62篇
  2010年   41篇
  2009年   31篇
  2008年   43篇
  2007年   41篇
  2006年   31篇
  2005年   25篇
  2004年   33篇
  2003年   24篇
  2002年   10篇
  2001年   2篇
  2000年   1篇
  1998年   3篇
  1988年   1篇
排序方式: 共有649条查询结果,搜索用时 18 毫秒
111.
Little is known about the role of plant functional diversity for ecosystem‐level carbon (C) fluxes. To fill this knowledge gap, we translocated monoliths hosting communities with four and 16 sown species from a long‐term grassland biodiversity experiment (‘The Jena Experiment’) into a controlled environment facility for ecosystem research (Ecotron). This allowed quantifying the effects of plant diversity on ecosystem C fluxes as well as three parameters of C uptake efficiency (water and nitrogen use efficiencies and apparent quantum yield). By combining data on ecosystem C fluxes with vegetation structure and functional trait‐based predictors, we found that increasing plant species and functional diversity led to higher gross and net ecosystem C uptake rates. Path analyses and light response curves unravelled the diversity of leaf nitrogen concentration in the canopy as a key functional predictor of C fluxes, either directly or indirectly via LAI and aboveground biomass.  相似文献   
112.

Background

There is a need to characterize genomes of the foodborne pathogen, Salmonella enterica serovar Enteritidis (SE) and identify genetic information that could be ultimately deployed for differentiating strains of the organism, a need that is yet to be addressed mainly because of the high degree of clonality of the organism. In an effort to achieve the first characterization of the genomes of SE of Canadian origin, we carried out massively parallel sequencing of the nucleotide sequence of 11 SE isolates obtained from poultry production environments (n = 9), a clam and a chicken, assembled finished genomes and investigated diversity of the SE genome.

Results

The median genome size was 4,678,683 bp. A total of 4,833 chromosomal genes defined the pan genome of our field SE isolates consisting of 4,600 genes present in all the genomes, i.e., core genome, and 233 genes absent in at least one genome (accessory genome). Genome diversity was demonstrable by the presence of 1,360 loci showing single nucleotide polymorphism (SNP) in the core genome which was used to portray the genetic distances by means of a phylogenetic tree for the SE isolates. The accessory genome consisted mostly of previously identified SE prophage sequences as well as two, apparently full- sized, novel prophages namely a 28 kb sequence provisionally designated as SE-OLF-10058 (3) prophage and a 43 kb sequence provisionally designated as SE-OLF-10012 prophage.

Conclusions

The number of SNPs identified in the relatively large core genome of SE is a reflection of substantial diversity that could be exploited for strain differentiation as shown by the development of an informative phylogenetic tree. Prophage sequences can also be exploited for SE strain differentiation and lineage tracking. This work has laid the ground work for further studies to develop a readily adoptable laboratory test for the subtyping of SE.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-713) contains supplementary material, which is available to authorized users.  相似文献   
113.
114.
115.
Yellow fever (YF) has re-emerged in the last two decades causing several outbreaks in endemic countries and spreading to new receptive regions. This changing epidemiology of YF creates new challenges for global public health efforts. Yellow fever is caused by the yellow fever virus (YFV) that circulates between humans, the mosquito vector, and non-human primates (NHP). In this systematic review and meta-analysis, we review and analyse data on the case fatality rate (CFR) and prevalence of YFV in humans, and on the prevalence of YFV in arthropods, and NHP in sub-Saharan Africa (SSA). We performed a comprehensive literature search in PubMed, Web of Science, African Journal Online, and African Index Medicus databases. We included studies reporting data on the CFR and/or prevalence of YFV. Extracted data was verified and analysed using the random effect meta-analysis. We conducted subgroup, sensitivity analysis, and publication bias analyses using the random effect meta-analysis while I2 statistic was employed to determine heterogeneity. This review was registered with PROSPERO under the identification CRD42021242444. The final meta-analysis included 55 studies. The overall case fatality rate due to YFV was 31.1% (18.3–45.4) in humans and pooled prevalence of YFV infection was 9.4% (6.9–12.2) in humans. Only five studies in West and East Africa detected the YFV in mosquito species of the genus Aedes and in Anopheles funestus. In NHP, YFV antibodies were found only in members of the Cercopithecidae family. Our analysis provides evidence on the ongoing circulation of the YFV in humans, Aedes mosquitoes and NHP in SSA. These observations highlight the ongoing transmission of the YFV and its potential to cause large outbreaks in SSA. As such, strategies such as those proposed by the WHO’s Eliminate Yellow Fever Epidemics (EYE) initiative are urgently needed to control and prevent yellow fever outbreaks in SSA.  相似文献   
116.
With the advancement in lineage‐specific differentiation from human pluripotent stem cells (hPSCs), downstream cell separation has now become a critical step to produce hPSC‐derived products. Since differentiation procedures usually result in a heterogeneous cell population, cell separation needs to be performed either to enrich the desired cell population or remove the undesired cell population. This article summarizes recent advances in separation processes for hPSC‐derived cells, including the standard separation technologies, such as magnetic‐activated cell sorting, as well as the novel separation strategies, such as those based on adhesion strength and metabolic flux. Specifically, the downstream bioprocessing flow and the identification of surface markers for various cell lineages are discussed. While challenges remain for large‐scale downstream bioprocessing of hPSC‐derived cells, the rational quality‐by‐design approach should be implemented to enhance the understanding of the relationship between process and the product and to ensure the safety of the produced cells.  相似文献   
117.
The recent discovery of new potent therapeutic molecules which do not reach the clinic due to poor delivery and low bioavailability have made the delivery of molecules a keystone in therapeutic development. Several technologies have been designed to improve cellular uptake of therapeutic molecules, including CPPs (cell-penetrating peptides), which represent a new and innovative concept to bypass the problem of bioavailability of drugs. CPPs constitute very promising tools and have been successfully applied for in vivo. Two CPP strategies have been described to date; the first one requires chemical linkage between the drug and the carrier for cellular drug internalization, and the second is based on the formation of stable complexes with drugs, depending on their chemical nature. The Pep and MPG families are short amphipathic peptides, which form stable nanoparticles with proteins and nucleic acids respectively. MPG- and Pep-based nanoparticles enter cells independently of the endosomal pathway and efficiently deliver cargoes, in a fully biologically active form, into a large variety of cell lines, as well as in animal models. This review focuses on the structure-function relationship of non-covalent MPG and Pep-1 strategies, and their requirement for cellular uptake of biomolecules and applications in cultured cells and animal models.  相似文献   
118.
ABSTRACT: BACKGROUND: Monitoring drug resistance in Mycobacterium tuberculosis is essential to curb the spread of tuberculosis (TB). Unfortunately, drug susceptibility testing is currently not available in Papua New Guinea (PNG) and that impairs TB control in this country. We report for the first time M. tuberculosis mutations associated with resistance to first and second-line anti-TB drugs in Madang, PNG. A molecular cluster analysis was performed to identify M. tuberculosis transmission in that region. RESULTS: Phenotypic drug susceptibility tests showed 15.7% resistance to at least one drug and 5.2% multidrug resistant (MDR) TB. Rifampicin resistant strains had the rpoB mutations D516F, D516Y or S531L; isoniazid resistant strains had the mutations katG S315T or inhA promoter C15T; streptomycin resistant strains had the mutations rpsL K43R, K88Q, K88R), rrs A514C or gidB V77G. The molecular cluster analysis indicated evidence for transmission of resistant strain. CONCLUSIONS: We observed a substantial rate of MDR-TB in the Madang area of PNG associated with mutations in specific genes. A close monitoring of drug resistance is therefore urgently required, particularly in the presence of drug-resistant M. tuberculosis transmission. In the absence of phenotypic drug susceptibility testing in PNG, molecular assays for drug resistance monitoring would be of advantage.  相似文献   
119.
MicroRNAs (miRNAs) are a class of small RNA molecules that function to control gene expression and restrict viral replication in host cells. The production of miRNAs is believed to be dependent upon the DICER enzyme. Available evidence suggests that in T lymphocytes, HIV-1 can both suppress and co-opt the host''s miRNA pathway for its own benefit. In this study, we examined the state of miRNA production in monocytes and macrophages as well as the consequences of viral infection upon the production of miRNA. Monocytes in general express low amounts of miRNA-related proteins, and DICER in particular could not be detected until after monocytes were differentiated into macrophages. In the case where HIV-1 was present prior to differentiation, the expression of DICER was suppressed. MicroRNA chip results for RNA isolated from transfected and treated cells indicated that a drop in miRNA production coincided with DICER protein suppression in macrophages. We found that the expression of DICER in monocytes is restricted by miR-106a, but HIV-1 suppressed DICER expression via the viral gene Vpr. Additionally, analysis of miRNA expression in monocytes and macrophages revealed evidence that some miRNAs can be processed by both DICER and PIWIL4. Results presented here have implications for both the pathology of viral infections in macrophages and the biogenesis of miRNAs. First, HIV-1 suppresses the expression and function of DICER in macrophages via a previously unknown mechanism. Second, the presence of miRNAs in monocytes lacking DICER indicates that some miRNAs can be generated by proteins other than DICER.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号