首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   602篇
  免费   59篇
  2023年   8篇
  2022年   4篇
  2021年   17篇
  2020年   11篇
  2019年   13篇
  2018年   14篇
  2017年   19篇
  2016年   24篇
  2015年   39篇
  2014年   36篇
  2013年   59篇
  2012年   63篇
  2011年   64篇
  2010年   40篇
  2009年   32篇
  2008年   48篇
  2007年   40篇
  2006年   32篇
  2005年   25篇
  2004年   30篇
  2003年   24篇
  2002年   11篇
  2001年   2篇
  2000年   2篇
  1998年   3篇
  1988年   1篇
排序方式: 共有661条查询结果,搜索用时 187 毫秒
641.
The International Journal of Life Cycle Assessment - Cement manufacturing is associated with global and local environmental issues. Many studies have employed life cycle assessment (LCA) to...  相似文献   
642.
643.
644.
Geoscientists and ecologists alike must confront the impact of climate change on ecosystems and the services they provide. In the marine realm, major changes are projected in net primary and export production, with significant repercussions on food security, carbon storage, and climate system feedbacks. However, these projections do not include the potential for rapid linear evolution to facilitate adaptation to environmental change. Climate genomics confronts this challenge by assessing the vulnerability of ecosystem services to climate change. Because DNA is the primary biological repository of detectable environmentally selected mutations (showing evidence of change before impacts arise in morphological or metabolic patterns), genomics provides a window into selection in response to climate change, while also recording neutral processes deriving from stochastic mechanisms (Lowe et al., Trends in Ecology & Evolution, 2017; 32:141–152). Due to the revolution afforded by sequencing technology developments, genomics can now meet ecologists and climate scientists in a cross-disciplinary space fertile for collaborations. Collaboration between geoscientists, ecologists, and geneticists must be reinforced in order to combine modeling and genomics approaches at every scale to improve our understanding and the management of ecosystems under climate change. To this end, we present advances in climate genomics from plankton to larger vertebrates, stressing the interactions between modeling and genomics, and identifying future work needed to develop and expand the field of climate genomics.  相似文献   
645.
A stepped-wedge cluster randomized trial (CRT) is a unidirectional crossover study in which timings of treatment initiation for clusters are randomized. Because the timing of treatment initiation is different for each cluster, an emerging question is whether the treatment effect depends on the exposure time, namely, the time duration since the initiation of treatment. Existing approaches for assessing exposure-time treatment effect heterogeneity either assume a parametric functional form of exposure time or model the exposure time as a categorical variable, in which case the number of parameters increases with the number of exposure-time periods, leading to a potential loss in efficiency. In this article, we propose a new model formulation for assessing treatment effect heterogeneity over exposure time. Rather than a categorical term for each level of exposure time, the proposed model includes a random effect to represent varying treatment effects by exposure time. This allows for pooling information across exposure-time periods and may result in more precise average and exposure-time-specific treatment effect estimates. In addition, we develop an accompanying permutation test for the variance component of the heterogeneous treatment effect parameters. We conduct simulation studies to compare the proposed model and permutation test to alternative methods to elucidate their finite-sample operating characteristics, and to generate practical guidance on model choices for assessing exposure-time treatment effect heterogeneity in stepped-wedge CRTs.  相似文献   
646.
Semi-competing risks refer to the time-to-event analysis setting, where the occurrence of a non-terminal event is subject to whether a terminal event has occurred, but not vice versa. Semi-competing risks arise in a broad range of clinical contexts, including studies of preeclampsia, a condition that may arise during pregnancy and for which delivery is a terminal event. Models that acknowledge semi-competing risks enable investigation of relationships between covariates and the joint timing of the outcomes, but methods for model selection and prediction of semi-competing risks in high dimensions are lacking. Moreover, in such settings researchers commonly analyze only a single or composite outcome, losing valuable information and limiting clinical utility—in the obstetric setting, this means ignoring valuable insight into timing of delivery after preeclampsia has onset. To address this gap, we propose a novel penalized estimation framework for frailty-based illness–death multi-state modeling of semi-competing risks. Our approach combines non-convex and structured fusion penalization, inducing global sparsity as well as parsimony across submodels. We perform estimation and model selection via a pathwise routine for non-convex optimization, and prove statistical error rate results in this setting. We present a simulation study investigating estimation error and model selection performance, and a comprehensive application of the method to joint risk modeling of preeclampsia and timing of delivery using pregnancy data from an electronic health record.  相似文献   
647.
648.
649.
650.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号