首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   685篇
  免费   73篇
  758篇
  2023年   9篇
  2022年   6篇
  2021年   19篇
  2020年   15篇
  2019年   14篇
  2018年   17篇
  2017年   19篇
  2016年   28篇
  2015年   47篇
  2014年   41篇
  2013年   66篇
  2012年   67篇
  2011年   63篇
  2010年   42篇
  2009年   34篇
  2008年   44篇
  2007年   45篇
  2006年   31篇
  2005年   28篇
  2004年   30篇
  2003年   26篇
  2002年   11篇
  2001年   4篇
  2000年   3篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   5篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1974年   1篇
  1971年   1篇
排序方式: 共有758条查询结果,搜索用时 15 毫秒
51.
The base-sequence selectivity of the noncovalent binding of (+/-)-trans-7,8-dihydroxy-anti-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyr ene (BPDE) to a series of synthetic polynucleotides in aqueous solutions (5 mM sodium cacodylate buffer, 20 mM NaCl, pH 7.0, 22 degrees C) was investigated. The magnitude of a red-shifted absorbance at 353 nm, attributed to intercalative complex formation, was utilized to determine values of the association constant Kic. Intercalation in the alternating pyridine-purine polymers poly(dA-dT).(dA-dT) (Kic = 20,000 M-1), poly(dG-dC).(dG-dC) (4200 M-1), and poly(dA-dC).(dG-dT) (9600 M-1) is distinctly favored over intercalation in their nonalternating counterparts poly(dA).(dT) (780 M-1), poly(dG).(dC) (1800 M-1), and poly(dA-dG).(dT-dC) (5400 M-1). Methylation at the 5-position of cytosine gives rise to a significant enhancement of intercalative binding, and Kic is 22,000 M-1 in poly(dG-m5dG).(dG-m5dC). In a number of these polynucleotides, values of Kic for pyrene qualitatively follow those exhibited by BPDE, suggesting that the pyrenyl residue in BPDE is a primary factor in determining the extent of intercalation. Both BPDE and pyrene exhibit a distinct preference for intercalating within dA-dT and dG-m5dC sequences. The catalysis of the chemical reactions of BPDE (hydrolysis to tetrols and covalent adduct formation) is enhanced significantly in the presence of each of the polynucleotides studied, particularly in the dG-containing polymers. A model in which catalysis is mediated by physical complex formation accounts well for the experimentally observed enhancement in reaction rates of BPDE in the alternating polynucleotides; however, in the nonalternating polymers a different or more complex catalysis mechanism may be operative.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
52.
The white‐nose syndrome (WNS), caused by the fungal pathogen Pseudogymnoascus destructans, is threatening the cave‐dwelling bat fauna of North America by killing individuals by the thousands in hibernacula each winter since its appearance in New York State less than ten years ago. Epidemiological models predict that WNS will reach the western coast of the USA by 2035, potentially eliminating most populations of susceptible bat species in its path (Frick et al. 2015; O'Regan et al. 2015). These models were built and validated using distributional data from the early years of the epidemic, which spread throughout eastern North America following a route driven by cave density and winter severity (Maher et al. 2012). In this issue of Molecular Ecology, Wilder et al. (2015) refine these findings by showing that connectivity among host populations, as assessed by population genetic markers, is crucial in determining the spread of the pathogen. Because host connectivity is much reduced in the hitherto disease free western half of North America, Wilder et al. make the reassuring prediction that the disease will spread more slowly west of the Great Plains.  相似文献   
53.
54.
Cytochromes P450 monooxygenases from the CYP98 family catalyze the meta-hydroxylation step in the phenylpropanoid biosynthetic pathway. The ref8 Arabidopsis (Arabidopsis thaliana) mutant, with a point mutation in the CYP98A3 gene, was previously described to show developmental defects, changes in lignin composition, and lack of soluble sinapoyl esters. We isolated a T-DNA insertion mutant in CYP98A3 and show that this mutation leads to a more drastic inhibition of plant development and inhibition of cell growth. Similar to the ref8 mutant, the insertion mutant has reduced lignin content, with stem lignin essentially made of p-hydroxyphenyl units and trace amounts of guaiacyl and syringyl units. However, its roots display an ectopic lignification and a substantial proportion of guaiacyl and syringyl units, suggesting the occurrence of an alternative CYP98A3-independent meta-hydroxylation mechanism active mainly in the roots. Relative to the control, mutant plantlets produce very low amounts of sinapoyl esters, but accumulate flavonol glycosides. Reduced cell growth seems correlated with alterations in the abundance of cell wall polysaccharides, in particular decrease in crystalline cellulose, and profound modifications in gene expression and homeostasis reminiscent of a stress response. CYP98A3 thus constitutes a critical bottleneck in the phenylpropanoid pathway and in the synthesis of compounds controlling plant development. CYP98A3 cosuppressed lines show a gradation of developmental defects and changes in lignin content (40% reduction) and structure (prominent frequency of p-hydroxyphenyl units), but content in foliar sinapoyl esters is similar to the control. The purple coloration of their leaves is correlated to the accumulation of sinapoylated anthocyanins.  相似文献   
55.
We have developed a highly sensitive approach to assess the abundance of uncultured bacteria in water samples from the central Baltic Sea by using a noncultured member of the “Epsilonproteobacteria” related to Thiomicrospira denitrificans as an example. Environmental seawater samples and samples enriched for the target taxon provided a unique opportunity to test the approach over a broad range of abundances. The approach is based on a combination of taxon- and domain-specific real-time PCR measurements determining the relative T. denitrificans-like 16S rRNA gene and 16S rRNA abundances, as well as the determination of total cell counts and environmental RNA content. It allowed quantification of T. denitrificans-like 16S rRNA molecules or 16S rRNA genes as well as calculation of the number of ribosomes per T. denitrificans-like cell. Every real-time measurement and its specific primer system were calibrated using environmental nucleic acids obtained from the original habitat for external standardization. These standards, as well as the respective samples to be measured, were prepared from the same DNA or RNA extract. Enrichment samples could be analyzed directly, whereas environmental templates had to be preamplified with general bacterial primers before quantification. Preamplification increased the sensitivity of the assay by more than 4 orders of magnitude. Quantification of enrichments with or without a preamplification step yielded comparable results. T. denitrificans-like 16S rRNA molecules ranged from 7.1 × 103 to 4.4 × 109 copies ml−1 or 0.002 to 49.7% relative abundance. T. denitrificans-like 16S rRNA genes ranged from 9.0 × 101 to 2.2 ×106 copies ml−1 or 0.01 to 49.7% relative abundance. Detection limits of this real-time-PCR approach were 20 16S rRNA molecules or 0.2 16S rRNA gene ml−1. The number of ribosomes per T. denitrificans-like cell was estimated to range from 20 to 200 in seawater and reached up to 2,000 in the enrichments. The results indicate that our real-time PCR approach can be used to determine cellular and relative abundances of uncultured marine bacterial taxa and to provide information about their levels of activity in their natural environment.  相似文献   
56.
The exosome is a 3' --> 5' exoribonuclease complex involved in RNA processing. We report the crystal structure of the RNase PH core complex of the Sulfolobus solfataricus exosome determined at a resolution of 2.8 A. The structure reveals a hexameric ring-like arrangement of three Rrp41-Rrp42 heterodimers, where both subunits adopt the RNase PH fold common to phosphorolytic exoribonucleases. Structure-guided mutagenesis reveals that the activity of the complex resides within the active sites of the Rrp41 subunits, all three of which face the same side of the hexameric structure. The Rrp42 subunit is inactive but contributes to the structuring of the Rrp41 active site. The high sequence similarity of this archaeal exosome to eukaryotic exosomes and its high structural similarity to the bacterial mRNA-degrading PNPase support a common basis for RNA-degrading machineries in all three domains of life.  相似文献   
57.
Integrins control many cell functions, including generation of reactive oxygen species (ROS) and regulation of collagen synthesis. Mesangial cells, found in the glomerulus of the kidney, are able to produce large amounts of ROS via the NADPH oxidase. We previously demonstrated that integrin alpha1-null mice develop worse fibrosis than wild-type mice following glomerular injury and this is due, in part, to excessive ROS production by alpha1-null mesangial cells. In the present studies, we describe the mechanism whereby integrin alpha1-null mesangial cells produce excessive ROS. Integrin alpha1-null mesangial cells have constitutively increased basal levels of activated Rac1, which result in its increased translocation to the cell membrane, excessive ROS production, and consequent collagen IV deposition. Basal Rac1 activation is a direct consequence of ligand-independent increased epidermal growth factor receptor (EGFR) phosphorylation in alpha1-null mesangial cells. Thus, our study demonstrates that integrin alpha1beta1-EGFR cross talk is a key step in negatively regulating Rac1 activation, ROS production, and excessive collagen synthesis, which is a hallmark of diseases characterized by irreversible fibrosis.  相似文献   
58.
59.
In diverse species, actin assembly facilitates clathrin-coated vesicle (CCV) formation during endocytosis. This role might be an adaptation specific to the unique environment at the cell cortex, or it might be fundamental, facilitating CCV formation on different membranes. Proteins of the Sla2p/Hip1R family bind to actin and clathrin at endocytic sites in yeast and mammals. We hypothesized that Hip1R might also coordinate actin assembly with clathrin budding at the trans-Golgi network (TGN). Using deconvolution and time-lapse microscopy, we showed that Hip1R is present on CCVs emerging from the TGN. These vesicles contain the mannose 6-phosphate receptor involved in targeting proteins to the lysosome, and the actin nucleating Arp2/3 complex. Silencing of Hip1R expression by RNAi resulted in disruption of Golgi organization and accumulation of F-actin structures associated with CCVs on the TGN. Hip1R silencing and actin poisons slowed cathepsin D exit from the TGN. These studies establish roles for Hip1R and actin in CCV budding from the TGN for lysosome biogenesis.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号