首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   58篇
  2023年   7篇
  2022年   1篇
  2021年   17篇
  2020年   11篇
  2019年   11篇
  2018年   14篇
  2017年   18篇
  2016年   23篇
  2015年   40篇
  2014年   37篇
  2013年   58篇
  2012年   65篇
  2011年   65篇
  2010年   40篇
  2009年   31篇
  2008年   43篇
  2007年   44篇
  2006年   32篇
  2005年   25篇
  2004年   31篇
  2003年   24篇
  2002年   12篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有663条查询结果,搜索用时 31 毫秒
61.
In diverse species, actin assembly facilitates clathrin-coated vesicle (CCV) formation during endocytosis. This role might be an adaptation specific to the unique environment at the cell cortex, or it might be fundamental, facilitating CCV formation on different membranes. Proteins of the Sla2p/Hip1R family bind to actin and clathrin at endocytic sites in yeast and mammals. We hypothesized that Hip1R might also coordinate actin assembly with clathrin budding at the trans-Golgi network (TGN). Using deconvolution and time-lapse microscopy, we showed that Hip1R is present on CCVs emerging from the TGN. These vesicles contain the mannose 6-phosphate receptor involved in targeting proteins to the lysosome, and the actin nucleating Arp2/3 complex. Silencing of Hip1R expression by RNAi resulted in disruption of Golgi organization and accumulation of F-actin structures associated with CCVs on the TGN. Hip1R silencing and actin poisons slowed cathepsin D exit from the TGN. These studies establish roles for Hip1R and actin in CCV budding from the TGN for lysosome biogenesis.  相似文献   
62.
We studied the effect of age on the response of aortic rings to injury produced by three days' incubation, and the mechanism of this response. Five-mm rings of the thoracic aorta isolated from Wistar rats were incubated or not in culture medium. Isometric contraction evoked by agonists (norepinephrine or serotonin) or high [K(+)](e) was determined in the presence and absence of endothelium. Experiments were repeated in the presence of propranolol (0.3 microM), polymixin B (36 microM), pyrrolidine dithiocarbamate (50 microM) or glutathione (3 mM). Inductible NO-synthase and cyclo-oxygenase-2 mRNA were determined by real-time PCR, and glutathione-related enzymes and catalase activity by spectrophotometry. Incubation reduced the isometric contraction evoked by agonists but not by high [K(+)](e). The reduction in agonist-evoked contraction was greater in rings from adult (norepinephrine Emax-80%) than in young (-40%) rats. The removal of the endothelium had no effect. The reduction in norepinephrine-evoked contraction was not due to endotoxin contamination, beta-adrenoceptor-mediated dilation or any change in ring structure (no fibrosis or edema). Inductible NO-synthase (but not cyclo-oxygenase-2) mRNA increased on incubation. N(G)-nitro-L-arginine methyl ester partially restored contractility in rings from adult animals, further addition of an anti-oxidant restored norepinephrine-evoked contraction. Catalase fell with age and glutathione reductase increased upon incubation in rings from young donors only. In conclusion, incubation of the aorta produces a specific reduction in agonist-evoked contraction that involves induction of smooth muscle cell oxidative stress and iNOS. The reaction is greater in rings from older animals.  相似文献   
63.
Understanding the ecology of drug-resistant pathogens is essential for devising rational programs to preserve the effective lifespan of antimicrobial agents and to abrogate epidemics of drug-resistant organisms. Mathematical models predict that strain fitness is an important determinant of multidrug-resistant Mycobacterium tuberculosis transmission, but the effects of strain diversity have been largely overlooked. Here we compared the impact of resistance mutations on the transmission of isoniazid-resistant M. tuberculosis in San Francisco during a 9-y period. Strains with a KatG S315T or inhA promoter mutation were more likely to spread than strains with other mutations. The impact of these mutations on the transmission of isoniazid-resistant strains was comparable to the effect of other clinical determinants of transmission. Associations were apparent between specific drug resistance mutations and the main M. tuberculosis lineages. Our results show that in addition to host and environmental factors, strain genetic diversity can influence the transmission dynamics of drug-resistant bacteria.  相似文献   
64.

Background

Bananas and plantains (Musa spp.) provide a staple food for many millions of people living in the humid tropics. The cultivated varieties (cultivars) are seedless parthenocarpic clones of which the origin remains unclear. Many are believed to be diploid and polyploid hybrids involving the A genome diploid M. acuminata and the B genome M. balbisiana, with the hybrid genomes consisting of a simple combination of the parental ones. Thus the genomic constitution of the diploids has been classified as AB, and that of the triploids as AAB or ABB. However, the morphology of many accessions is biased towards either the A or B phenotype and does not conform to predictions based on these genomic formulae.

Scope

On the basis of published cytotypes (mitochondrial and chloroplast genomes), we speculate here that the hybrid banana genomes are unbalanced with respect to the parental ones, and/or that inter-genome translocation chromosomes are relatively common. We hypothesize that the evolution under domestication of cultivated banana hybrids is more likely to have passed through an intermediate hybrid, which was then involved in a variety of backcrossing events. We present experimental data supporting our hypothesis and we propose a set of experimental approaches to test it, thereby indicating other possibilities for explaining some of the unbalanced genome expressions. Progress in this area would not only throw more light on the origin of one of the most important crops, but provide data of general relevance for the evolution under domestication of many other important clonal crops. At the same time, a complex origin of the cultivated banana hybrids would imply a reconsideration of current breeding strategies.  相似文献   
65.
MicroRNAs (miRNAs) are a class of small RNA molecules that function to control gene expression and restrict viral replication in host cells. The production of miRNAs is believed to be dependent upon the DICER enzyme. Available evidence suggests that in T lymphocytes, HIV-1 can both suppress and co-opt the host''s miRNA pathway for its own benefit. In this study, we examined the state of miRNA production in monocytes and macrophages as well as the consequences of viral infection upon the production of miRNA. Monocytes in general express low amounts of miRNA-related proteins, and DICER in particular could not be detected until after monocytes were differentiated into macrophages. In the case where HIV-1 was present prior to differentiation, the expression of DICER was suppressed. MicroRNA chip results for RNA isolated from transfected and treated cells indicated that a drop in miRNA production coincided with DICER protein suppression in macrophages. We found that the expression of DICER in monocytes is restricted by miR-106a, but HIV-1 suppressed DICER expression via the viral gene Vpr. Additionally, analysis of miRNA expression in monocytes and macrophages revealed evidence that some miRNAs can be processed by both DICER and PIWIL4. Results presented here have implications for both the pathology of viral infections in macrophages and the biogenesis of miRNAs. First, HIV-1 suppresses the expression and function of DICER in macrophages via a previously unknown mechanism. Second, the presence of miRNAs in monocytes lacking DICER indicates that some miRNAs can be generated by proteins other than DICER.  相似文献   
66.
The selection of a proper AUG start codon requires the base-pairing interactions between the codon on the mRNA and the anticodon of the initiator tRNA. This selection process occurs in a pre-initiation complex that includes multiple translation initiation factors and the small ribosomal subunit. To study how these initiation factors are involved in start codon recognition in multicellular organisms, we isolated mutants that allow the expression of a GFP reporter containing a non-AUG start codon. Here we describe the characterization of mutations in eif-1, which encodes the Caenorhabditis elegans translation initiation factor 1 (eIF1). Two mutations were identified, both of which are substitutions of amino acid residues that are identical in all eukaryotic eIF1 proteins. These residues are located in a structural region where the amino acid residues affected by the Saccharomyces cerevisiae eIF1 mutations are also localized. Both C. elegans mutations are dominant in conferring a non-AUG translation initiation phenotype and lead to growth arrest defects in homozygous animals. By assaying reporter constructs that have base changes at the AUG start codon, these mutants are found to allow expression from most reporters that carry single base changes within the AUG codon. This trend of non-AUG mediated initiation was also observed previously for C. elegans eIF2β mutants, indicating that these two factors play a similar role. These results support that eIF1 functions in ensuring the fidelity of AUG start codon recognition in a multicellular organism.TRANSLATION initiation is thought to be one of the most complex cellular processes in eukaryotes. It involves at least 12 translation initiation factors (eIFs) comprising over 30 polypeptides (Pestova et al. 2007). These factors bring together an initiator methionyl tRNA (Met-tRNAi), the small ribosomal subunit, and a mRNA to form a 48S initiation complex. An important role performed by this complex is to select an AUG codon to initiate translation of the mRNA. Since the first AUG at the 5′ end of most mRNAs is selected as the start site, it is believed that the initiation complex scans for an AUG start codon as it moves from the 5′-capped end of the mRNA toward the 3′ end, as proposed in the ribosomal scanning model (Kozak 1978; Kozak 1989). The recognition of the AUG start codon is mediated by the anticodon of the Met-tRNAi, and the matching base-pairing interactions between the codon of the mRNA and the anticodon determine the site of initiation (Cigan et al. 1988). These base-pairing interactions are essential, but are likely not the only components required for accurately selecting the correct AUG start codon. Numerous initiation factors along with base-pairing interactions have been shown to aid in the AUG recognition process (Pestova et al. 2007).Translation initiation factors involved in start codon selection fidelity were first identified through genetic studies performed in the yeast Saccharomyces cerevisiae. Mutant strains with a modified His4 gene that had an AUU instead of an AUG at the native start site were selected for the ability to survive on media lacking histidine (Donahue et al. 1988; Castilho-Valavicius et al. 1990). These mutants were found to be able to produce the His4 protein by using a downstream inframe UUG codon (the third codon within the His4 coding region) as the translation start site. Further analyses determined that non-AUG initiation occurred mostly from a UUG codon and not significantly from other codons (Huang et al. 1997). These mutants defined five genetic loci and were named sui1-sui5 (suppressor of initiation codon) on the basis of their ability to initiate translation at a non-AUG codon.The sui1 suppressors were found to have missense mutations in eIF1. These missense mutations showed semidominant or codominant properties in non-AUG translation initiation while deletion of the eIF1 gene led to lethality in yeast (Yoon and Donahue 1992). eIF1 is a highly conserved protein with a size of approximately 12 kDa that plays a vital role in multiple translation initiation steps. eIF1 is incorporated into a multifactor complex that includes eIF1A, eIF3, and eIF5 and stimulates the recruiting of the ternary complex (consisting of eIF2 · GTP and the charged Met-tRNAi) to the small ribosomal subunit to form the 43S pre-initiation complex (Singh et al. 2004). eIF1 acts synergistically with eIF1A to promote continuous ribosomal scanning for AUG codons by stabilizing an open conformation that allows mRNA to pass through the complex (Maag et al. 2005; Cheung et al. 2007; Passmore et al. 2007). It also mediates the assembly of the ribosomal initiation complex at the AUG start codon (Pestova et al. 1998). eIF1 dissociates from the complex upon recognition of the AUG codon and this dissociation is necessary to trigger a series of conformational changes leading to the translation elongation phase (Algire et al. 2005). Consistent with these roles, sui1 mutations reduce the affinity of eIF1 for the ribosome and cause premature release of eIF1 at non-AUG codons (Cheung et al. 2007). Other sui mutations support the involvement of four additional genes in translation initiation fidelity in yeast. Mutations have been isolated in the heterotrimeric eIF2 as SUI2 (α-subunit) (Cigan et al. 1989), SUI3 (β-subunit) (Donahue et al. 1988), and SUI4 (γ-subunit) (Huang et al. 1997), and a mutation in eIF5 corresponds to the SUI5 mutant (Huang et al. 1997).However, the genetic studies that identified these translation fidelity mutants were conducted only in yeast. It is not known if there are similar mechanisms regulating translation initiation fidelity in multicellular organisms. To address this question, we designed a genetic system to isolate C. elegans mutants that have reduced fidelity in AUG start codon selection (Zhang and Maduzia 2010). Mutants were selected on the basis of their ability to express a GFP reporter that contains a GUG codon in place of its native translation start site. Here we report the characterization of two mutants that have mutations in eIF1. Unlike yeast sui1 mutants, which preferred the UUG codon, these mutants are capable of using a subset of non-AUG codons for translation initiation. Our results are consistent with eIF1 playing a role in the fidelity of AUG codon selection, perhaps by discriminating base-pairing interactions between the codon and anticodon during start-site selection.  相似文献   
67.
N-linked glycosylation is recognized as an important post-translational modification across all three domains of life. However, the understanding of the genetic pathways for the assembly and attachment of N-linked glycans in eukaryotic and bacterial systems far outweighs the knowledge of comparable processes in Archaea. The recent characterization of a novel trisaccharide [beta-ManpNAcA6Thr-(1-4)-beta-GlcpNAc3NAcA-(1-3)-beta-GlcpNAc]N-linked to asparagine residues in Methanococcus voltae flagellin and S-layer proteins affords new opportunities to investigate N-linked glycosylation pathways in Archaea. In this contribution, the insertional inactivation of several candidate genes within the M. voltae genome and their resulting effects on flagellin and S-layer glycosylation are reported. Two of the candidate genes were shown to have effects on flagellin and S-layer protein molecular mass and N-linked glycan structure. Further examination revealed inactivation of either of these two genes also had effects on flagella assembly. These genes, designated agl (archaeal glycosylation) genes, include a glycosyl transferase (aglA) involved in the attachment of the terminal sugar to the glycan and an STT3 oligosaccharyl transferase homologue (aglB) involved in the transfer of the complete glycan to the flagellin and S-layer proteins. These findings document the first experimental evidence for genes involved in any glycosylation process within the domain Archaea.  相似文献   
68.
Cytochromes P450 monooxygenases from the CYP98 family catalyze the meta-hydroxylation step in the phenylpropanoid biosynthetic pathway. The ref8 Arabidopsis (Arabidopsis thaliana) mutant, with a point mutation in the CYP98A3 gene, was previously described to show developmental defects, changes in lignin composition, and lack of soluble sinapoyl esters. We isolated a T-DNA insertion mutant in CYP98A3 and show that this mutation leads to a more drastic inhibition of plant development and inhibition of cell growth. Similar to the ref8 mutant, the insertion mutant has reduced lignin content, with stem lignin essentially made of p-hydroxyphenyl units and trace amounts of guaiacyl and syringyl units. However, its roots display an ectopic lignification and a substantial proportion of guaiacyl and syringyl units, suggesting the occurrence of an alternative CYP98A3-independent meta-hydroxylation mechanism active mainly in the roots. Relative to the control, mutant plantlets produce very low amounts of sinapoyl esters, but accumulate flavonol glycosides. Reduced cell growth seems correlated with alterations in the abundance of cell wall polysaccharides, in particular decrease in crystalline cellulose, and profound modifications in gene expression and homeostasis reminiscent of a stress response. CYP98A3 thus constitutes a critical bottleneck in the phenylpropanoid pathway and in the synthesis of compounds controlling plant development. CYP98A3 cosuppressed lines show a gradation of developmental defects and changes in lignin content (40% reduction) and structure (prominent frequency of p-hydroxyphenyl units), but content in foliar sinapoyl esters is similar to the control. The purple coloration of their leaves is correlated to the accumulation of sinapoylated anthocyanins.  相似文献   
69.
Changes in intracellular Ca(2+) concentration ([Ca(2+)](i)) control the setting up of the neuro-muscular synapse in vitro and probably in vivo. Dissociated cultures of purified embryonic (E15) rat motoneurons were used to explore the molecular mechanisms by which endoplasmic reticulum Ca(2+) stores, via both ryanodine-sensitive and IP(3)-sensitive intracellular Ca(2+) channels control [Ca(2+)](i) homeostasis in these neurons during ontogenesis. Fura-2 microspectrofluorimetry monitorings in single neurons showed that caffeine-induced responses of [Ca(2+)](i) increased progressively from days 1-7 in culture. These responses were blocked by ryanodine and nicardipine but not by omega-conotoxin-GVIA or omega-conotoxin-MVIIC suggesting a close functional relationship between ryanodine-sensitive and L-type Ca(v)1 Ca(2+) channels. Moreover, after 6 days in vitro, neurons exhibited spontaneous or caffeine-induced Ca(2+) oscillations that were attenuated by nicardipine. In 1-day-old neurons, both thapsigargin or CPA, which deplete Ca(2+) stores from the endoplasmic reticulum, induced an increase in [Ca(2+)](i) in 75% of the neurons tested. The number of responding motoneurons declined to 25% at 5-6 days in vitro. Xestospongin-C, a membrane-permeable IP(3) receptor inhibitor blocked the CPA-induced [Ca(2+)](i) response in all stages. RT-PCR studies investigating the expression pattern of RYR and IP(3) Ca(2+) channels isoforms confirmed the presence of their different isoforms and provided evidence for a specific pattern of development for RYR channels during the first week in vitro. Taken together, present results show that the control of motoneuronal [Ca(2+)](i) homeostasis is developmentally regulated and suggest the presence of an intracellular ryanodine-sensitive Ca(2+) channel responsible for a Ca(2+)-induced Ca(2+) release in embryonic motoneurons following voltage-dependent Ca(2+) entry via L-type Ca(2+) channels.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号