首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   58篇
  2023年   7篇
  2022年   1篇
  2021年   17篇
  2020年   11篇
  2019年   11篇
  2018年   14篇
  2017年   18篇
  2016年   23篇
  2015年   40篇
  2014年   37篇
  2013年   58篇
  2012年   65篇
  2011年   65篇
  2010年   40篇
  2009年   31篇
  2008年   43篇
  2007年   44篇
  2006年   32篇
  2005年   25篇
  2004年   31篇
  2003年   24篇
  2002年   12篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
排序方式: 共有663条查询结果,搜索用时 312 毫秒
101.
Herein the development of an alternative optic-conductive fiber configuration applied for the construction of biosensing platforms. This new approach is based on applying the chemical polymerization of pyrrole onto the surface of polymethyl metacrylate (PMMA) fibers to create a polymer—a conductive surface, onto which an additional photoactive polypyrrole-benzophenone (PpyBz) film is electrochemically generated upon the fiber surface. Irradiation of the benzophenone groups embedded in the Ppy films with UV radiation (350 nm) formed active radicals that allowed the covalent attachment of the desired bioreceptors. Characterization of the amperometric biosensing matrix was accomplished by using a model Urease (Urs) through electrochemical impedance spectroscopy (EIS) and amperometry. Both techniques have shown a low charge transfer resistance (340 kΩ) and a high sensitivity (12.3 μA mM−1 cm−2). Thereafter, the construction of an optical biosensing matrix based on horseradish peroxidase (HRP) production of photons was carried out. The high signal to noise (S/N) ratio (1600) indicated clearly that this approach can serve as a new platform to replace glass optical fibers based on biosensors.  相似文献   
102.
103.
Acute myocardial infarction (AMI) is a common cause of death for which effective treatments are available provided that diagnosis is rapid. The current diagnostic gold standards are circulating cardiac troponins I and T. However, their slow release delays diagnosis, and their persistence limits their utility in the identification of reinfarction. The aim was to identify candidate biomarkers of AMI. Isolated mouse hearts were perfused with oxygenated protein-free buffer, and coronary effluent was collected after ischemia or during matched normoxic perfusion. Effluents were analyzed using proteomics approaches based on one- or two-dimensional initial separation. Of the 459 proteins identified after ischemia with one-dimensional separation, 320 were not detected in the control coronary effluent. Among these were all classic existing biomarkers of AMI. We also identified the cardiac isoform of myosin-binding protein C in its full-length form and as a 40-kDa degradation product. This protein was not detected in the other murine organs examined, increased markedly with even trivial myocardial infarction, and could be detected in the plasma after myocardial infarction in vivo, a profile compatible with a biomarker of AMI. Two-dimensional fluorescence DIGE of ischemic and control coronary effluents identified more than 200 asymmetric spots verified by swapping dyes. Once again existing biomarkers of injury were confirmed as well as posttranslational modifications of antioxidant proteins such as peroxiredoxins. Perfusing hearts with protein-free buffers provides a platform of graded ischemic injury that allows detailed analysis of protein release and identification of candidate cardiac biomarkers like myosin-binding protein C.Acute myocardial infarction (AMI)1 is a common cause of death for which effective treatments are available provided that the condition is rapidly diagnosed. The modern diagnosis of AMI relies on the rise and fall of a specific serum biomarker accompanied by an appropriate circumstance such as chest pain or revascularization. In this accepted paradigm, the diagnosis cannot be ruled in or ruled out without the definite presence or definite absence of a serum biomarker. The ideal biomarker of cardiac injury should be cardiac specific and released rapidly after myocardial injury in direct proportion to the extent of damage. Furthermore, the biomarker should have a high sensitivity and specificity (1). Several biomarkers of AMI have been described in the literature, but only a few, none of which are ideal, have found their way into routine clinical practice. For example, CK-MB starts to increase 4–8 h after coronary artery occlusion and returns to base line within 2–3 days (2). However, its use is limited by its presence in skeletal muscle and normal serum and by sensitivity of the assay to interference, causing some to question its utility (3). Myoglobin is another cytoplasmic protein found in cardiac and skeletal, but not smooth, muscle. It is released even earlier within 1–2 h of AMI and peaks within 5–6 h (2). Unfortunately, any injury to skeletal muscle also causes elevated levels of myoglobin, reducing specificity. Fatty acid-binding proteins (FABPs) are small (15-kDa) cytoplasmic proteins expressed in all tissues with active fatty acid metabolism. Among the nine proteins, heart-specific FABP (H-FABP) is found in heart but also kidney, brain, skeletal muscle, and placenta (4). Following acute myocardial infarction, H-FABP can be detected within 20 min and peaks at 4 h, considerably faster even than CK/CK-MB in the same patient cohort. Although H-FABP concentrations in normal plasma are low, they are known to rise nonspecifically during physical exertion (without a troponin rise), kidney injury, and stroke (5).The most specific and sensitive cardiac proteins released after acute myocardial infarction are cardiac troponins I and T. Both troponins I and T are released slowly, peaking ∼18 h after myocardial infarction, and remain elevated for 7–10 days (2). This slow release is likely the result of their relatively inaccessible cellular location compared with CK-MB, myoglobin, and H-FABP. Troponins regulate the physical interaction of actin and myosin and thus are found almost entirely associated within the crystalline structure of the sarcomere of striated muscle cells (6). The troponin complex is composed of three forms: I, T, and C. Troponins I and T exist as cardiac specific isoforms with epitopes that differ from the corresponding skeletal isoforms. In addition, the absent or extremely low normal circulating levels of troponin provide the greatest dynamic range of any of the currently available biomarkers (7). Although there is no doubt troponins have revolutionized the detection and management of patients with AMI (8), they do have disadvantages. The slow release of troponin delays diagnosis and the initiation of specific treatments that could salvage heart tissue in those in whom it is raised. Similarly, patients in whom it is absent and who are ultimately reassured and discharged are admitted to the hospital unnecessarily. Furthermore, the persistence of troponins limits their utility in the diagnosis of reinfarction.It is therefore widely accepted that there is a need for new biomarkers that can diagnose AMI earlier during its natural history and/or that have a short plasma half-life, allowing use in diagnosis and quantification of reinfarction. The purpose of this study was to use the platform of the crystalloid perfused mouse hearts to perform a systematic proteomics analysis of the coronary effluent after minimal AMI to identify new potential biomarkers (9).  相似文献   
104.
105.
Hepcidin was originally identified as a liver-expressed antimicrobial peptide but further studies have shown that it also has a key role in iron homeostasis. The NMR structure of the synthetic peptides reveal a distorted beta-sheet containing 4 disulphide bridges, with an unusual vicinal disulphide bridge which has been suggested to be functionally significant. In this study, we report the presence of co-purified iron with the urine-purified 20 and 25 residue hepcidins. Since the published structure does not allow metal binding, the interaction of hepcidin with metals was investigated for other possible structural conformations by threading its primary sequence onto existing 3D folds. Several alignments were obtained and the best scores were used to build a 3D model of hepcidin containing one atom of iron. The new 3D structure, that contains only reduced Cys residues, is completely different from the solved structure of the synthetic peptide. Although the model presented here shows only one metal bound to the peptide, the binding of several metal atoms cannot be excluded from such a short flexible peptide. The co-purification of iron with both peptides, together with our 3D model, suggest a conformational polymorphism for hepcidin, reminiscent of the iron regulatory proteins IRPs.  相似文献   
106.
The oxidative system H2O2/fluorinated alcohol (TFE, HFIP) was used for direct acid- and MeReO3-catalyzed synthesis of 1,2,4,5-tetraoxanes from cyclic (C6, C7, and C12) and acyclic ketones. The influence of ring size and alkyl chain length were studied and antimalarial activities of synthetic 3,3,6,6-tetraalkyl-1,2,4,5-tetraoxanes were determined. Variations in their antimalarial activities were significant, although they share similar electrochemical properties of the peroxide bond.  相似文献   
107.
108.

Background

STOP (Stable Tubulin-Only Polypeptide) null mice show behavioral deficits, impaired synaptic plasticity, decrease in synaptic vesicular pools and disturbances in dopaminergic transmission, and are considered a neurodevelopmental model of schizophrenia. Olfactory neurons highly express STOP protein and are continually generated throughout life. Experimentally-induced loss of olfactory neurons leads to epithelial regeneration within two months, providing a useful model to evaluate the role played by STOP protein in adult olfactory neurogenesis.

Methodology/Principal Findings

Immunocytochemistry and electron microscopy were used to study the structure of the glomerulus in the main olfactory bulb and neurogenesis in the neurosensorial epithelia. In STOP null mice, olfactory neurons showed presynaptic swellings with tubulovesicular profiles and autophagic-like structures. In olfactory and vomeronasal epithelia, there was an increase in neurons turnover, as shown by the increase in number of proliferating, apoptotic and immature cells with no changes in the number of mature neurons. Similar alterations in peripheral olfactory neurogenesis have been previously described in schizophrenia patients. In STOP null mice, regeneration of the olfactory epithelium did not modify these anomalies; moreover, regeneration resulted in abnormal organisation of olfactory terminals within the olfactory glomeruli in STOP null mice.

Conclusions/Significance

In conclusion, STOP protein seems to be involved in the establishment of synapses in the olfactory glomerulus. Our results indicate that the olfactory system of STOP null mice is a well-suited experimental model (1) for the study of the mechanism of action of STOP protein in synaptic function/plasticity and (2) for pathophysiological studies of the mechanisms of altered neuronal connections in schizophrenia.  相似文献   
109.
Cystatin C (CysC) expression in the brain is elevated in human patients with epilepsy, in animal models of neurodegenerative conditions, and in response to injury, but whether up-regulated CysC expression is a manifestation of neurodegeneration or a cellular repair response is not understood. This study demonstrates that human CysC is neuroprotective in cultures exposed to cytotoxic challenges, including nutritional-deprivation, colchicine, staurosporine, and oxidative stress. While CysC is a cysteine protease inhibitor, cathepsin B inhibition was not required for the neuroprotective action of CysC. Cells responded to CysC by inducing fully functional autophagy via the mTOR pathway, leading to enhanced proteolytic clearance of autophagy substrates by lysosomes. Neuroprotective effects of CysC were prevented by inhibiting autophagy with beclin 1 siRNA or 3-methyladenine. Our findings show that CysC plays a protective role under conditions of neuronal challenge by inducing autophagy via mTOR inhibition and are consistent with CysC being neuroprotective in neurodegenerative diseases. Thus, modulation of CysC expression has therapeutic implications for stroke, Alzheimer''s disease, and other neurodegenerative disorders.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号