全文获取类型
收费全文 | 14659篇 |
免费 | 1179篇 |
国内免费 | 1篇 |
专业分类
15839篇 |
出版年
2024年 | 18篇 |
2023年 | 87篇 |
2022年 | 210篇 |
2021年 | 411篇 |
2020年 | 209篇 |
2019年 | 297篇 |
2018年 | 420篇 |
2017年 | 344篇 |
2016年 | 558篇 |
2015年 | 930篇 |
2014年 | 1023篇 |
2013年 | 1060篇 |
2012年 | 1418篇 |
2011年 | 1307篇 |
2010年 | 816篇 |
2009年 | 658篇 |
2008年 | 904篇 |
2007年 | 777篇 |
2006年 | 680篇 |
2005年 | 641篇 |
2004年 | 526篇 |
2003年 | 487篇 |
2002年 | 420篇 |
2001年 | 211篇 |
2000年 | 199篇 |
1999年 | 152篇 |
1998年 | 83篇 |
1997年 | 61篇 |
1996年 | 35篇 |
1995年 | 52篇 |
1994年 | 48篇 |
1993年 | 38篇 |
1992年 | 63篇 |
1991年 | 56篇 |
1990年 | 72篇 |
1989年 | 46篇 |
1988年 | 39篇 |
1987年 | 38篇 |
1986年 | 30篇 |
1985年 | 39篇 |
1984年 | 27篇 |
1983年 | 28篇 |
1982年 | 25篇 |
1981年 | 23篇 |
1979年 | 23篇 |
1974年 | 19篇 |
1973年 | 25篇 |
1971年 | 25篇 |
1970年 | 17篇 |
1968年 | 19篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
42.
Sebastian Swanson Venkatesh Sivaraman Gevorg Grigoryan Amy E. Keating 《Protein science : a publication of the Protein Society》2022,31(6)
Despite advances in protein engineering, the de novo design of small proteins or peptides that bind to a desired target remains a difficult task. Most computational methods search for binder structures in a library of candidate scaffolds, which can lead to designs with poor target complementarity and low success rates. Instead of choosing from pre‐defined scaffolds, we propose that custom peptide structures can be constructed to complement a target surface. Our method mines tertiary motifs (TERMs) from known structures to identify surface‐complementing fragments or “seeds.” We combine seeds that satisfy geometric overlap criteria to generate peptide backbones and score the backbones to identify the most likely binding structures. We found that TERM‐based seeds can describe known binding structures with high resolution: the vast majority of peptide binders from 486 peptide‐protein complexes can be covered by seeds generated from single‐chain structures. Furthermore, we demonstrate that known peptide structures can be reconstructed with high accuracy from peptide‐covering seeds. As a proof of concept, we used our method to design 100 peptide binders of TRAF6, seven of which were predicted by Rosetta to form higher‐quality interfaces than a native binder. The designed peptides interact with distinct sites on TRAF6, including the native peptide‐binding site. These results demonstrate that known peptide‐binding structures can be constructed from TERMs in single‐chain structures and suggest that TERM information can be applied to efficiently design novel target‐complementing binders. 相似文献
43.
44.
Athanasios Paschalis Simone Fatichi Jakob Zscheischler Philippe Ciais Michael Bahn Lena Boysen Jinfeng Chang Martin De Kauwe Marc Estiarte Daniel Goll Paul J. Hanson Anna B. Harper Enqing Hou Jaime Kigel Alan K. Knapp Klaus S. Larsen Wei Li Sebastian Lienert Yiqi Luo Patrick Meir Julia E. M. S. Nabel Rom Ogaya Anthony J. Parolari Changhui Peng Josep Peuelas Julia Pongratz Serge Rambal Inger K. Schmidt Hao Shi Marcelo Sternberg Hanqin Tian Elisabeth Tschumi Anna Ukkola Sara Vicca Nicolas Viovy Ying‐Ping Wang Zhuonan Wang Karina Williams Donghai Wu Qiuan Zhu 《Global Change Biology》2020,26(6):3336-3355
Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model‐data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter‐model variation is generally large and model agreement varies with timescales. In severely water‐limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter‐model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models. 相似文献
45.
46.
47.
Genetic code expansion for unnatural amino acid mutagenesis has, until recently, been limited to cell culture. We demonstrate the site-specific incorporation of unnatural amino acids into proteins in Drosophila melanogaster at different developmental stages, in specific tissues and in a subset of cells within a tissue. This approach provides a foundation for probing and controlling processes in this established metazoan model organism with a new level of molecular precision. 相似文献
48.
Yang CS Lee JS Rodgers M Min CK Lee JY Kim HJ Lee KH Kim CJ Oh B Zandi E Yue Z Kramnik I Liang C Jung JU 《Cell host & microbe》2012,11(3):264-276
Phagocytosis and autophagy are two important and related arms of the host's first-line defense against microbial invasion. Rubicon is a RUN domain containing cysteine-rich protein that functions as part of a Beclin-1-Vps34-containing autophagy complex. We report that Rubicon is also an essential, positive regulator of the NADPH oxidase complex. Upon microbial infection or Toll-like-receptor 2 (TLR2) activation, Rubicon interacts with the p22phox subunit of the NADPH oxidase complex, facilitating its phagosomal trafficking to induce a burst of reactive oxygen species (ROS) and inflammatory cytokines. Consequently, ectopic expression or depletion of Rubicon profoundly affected ROS, inflammatory cytokine production, and subsequent antimicrobial activity. Rubicon's actions in autophagy and in the NADPH oxidase complex are functionally and genetically separable, indicating that Rubicon functions in two ancient innate immune machineries, autophagy and phagocytosis, depending on the environmental stimulus. Rubicon may thus be pivotal to generating an optimal intracellular immune response against microbial infection. 相似文献
49.
Hye Min Kim Min Jin Lee Ji Young Jung Chung Yeon Hwang Mincheol Kim Hee-Myong Ro Jongsik Chun Yoo Kyung Lee 《Journal of microbiology (Seoul, Korea)》2016,54(11):713-723
The increasing temperature in Arctic tundra deepens the active layer, which is the upper layer of permafrost soil that experiences repeated thawing and freezing. The increasing of soil temperature and the deepening of active layer seem to affect soil microbial communities. Therefore, information on soil microbial communities at various soil depths is essential to understand their potential responses to climate change in the active layer soil. We investigated the community structure of soil bacteria in the active layer from moist acidic tundra in Council, Alaska. We also interpreted their relationship with some relevant soil physicochemical characteristics along soil depth with a fine scale (5 cm depth interval). The bacterial community structure was found to change along soil depth. The relative abundances of Acidobacteria, Gammaproteobacteria, Planctomycetes, and candidate phylum WPS-2 rapidly decreased with soil depth, while those of Bacteroidetes, Chloroflexi, Gemmatimonadetes, and candidate AD3 rapidly increased. A structural shift was also found in the soil bacterial communities around 20 cm depth, where two organic (upper Oi and lower Oa) horizons are subdivided. The quality and the decomposition degree of organic matter might have influenced the bacterial community structure. Besides the organic matter quality, the vertical distribution of bacterial communities was also found to be related to soil pH and total phosphorus content. This study showed the vertical change of bacterial community in the active layer with a fine scale resolution and the possible influence of the quality of soil organic matter on shaping bacterial community structure. 相似文献
50.