首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4610篇
  免费   404篇
  5014篇
  2024年   3篇
  2023年   52篇
  2022年   80篇
  2021年   204篇
  2020年   86篇
  2019年   125篇
  2018年   134篇
  2017年   126篇
  2016年   199篇
  2015年   351篇
  2014年   369篇
  2013年   388篇
  2012年   503篇
  2011年   465篇
  2010年   267篇
  2009年   190篇
  2008年   265篇
  2007年   242篇
  2006年   197篇
  2005年   177篇
  2004年   127篇
  2003年   145篇
  2002年   126篇
  2001年   16篇
  2000年   13篇
  1999年   18篇
  1998年   20篇
  1997年   16篇
  1996年   7篇
  1995年   6篇
  1994年   10篇
  1993年   7篇
  1992年   6篇
  1991年   5篇
  1990年   10篇
  1989年   4篇
  1988年   4篇
  1987年   5篇
  1982年   5篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1973年   6篇
  1972年   3篇
  1971年   2篇
  1969年   3篇
  1967年   4篇
  1966年   3篇
  1965年   2篇
排序方式: 共有5014条查询结果,搜索用时 15 毫秒
21.
22.
Post-translational modification of proteins by lysine acetylation plays important regulatory roles in living cells. The budding yeast Saccharomyces cerevisiae is a widely used unicellular eukaryotic model organism in biomedical research. S. cerevisiae contains several evolutionary conserved lysine acetyltransferases and deacetylases. However, only a few dozen acetylation sites in S. cerevisiae are known, presenting a major obstacle for further understanding the regulatory roles of acetylation in this organism. Here we use high resolution mass spectrometry to identify about 4000 lysine acetylation sites in S. cerevisiae. Acetylated proteins are implicated in the regulation of diverse cytoplasmic and nuclear processes including chromatin organization, mitochondrial metabolism, and protein synthesis. Bioinformatic analysis of yeast acetylation sites shows that acetylated lysines are significantly more conserved compared with nonacetylated lysines. A large fraction of the conserved acetylation sites are present on proteins involved in cellular metabolism, protein synthesis, and protein folding. Furthermore, quantification of the Rpd3-regulated acetylation sites identified several previously known, as well as new putative substrates of this deacetylase. Rpd3 deficiency increased acetylation of the SAGA (Spt-Ada-Gcn5-Acetyltransferase) complex subunit Sgf73 on K33. This acetylation site is located within a critical regulatory domain in Sgf73 that interacts with Ubp8 and is involved in the activation of the Ubp8-containing histone H2B deubiquitylase complex. Our data provides the first global survey of acetylation in budding yeast, and suggests a wide-ranging regulatory scope of this modification. The provided dataset may serve as an important resource for the functional analysis of lysine acetylation in eukaryotes.Lysine acetylation is a dynamic and reversible post-translational modification. Acetylation of lysines on their ε-amino group is catalyzed by lysine acetyltransferases (KATs1, also known as histone acetyltrasferases (HATs)), and reversed by lysine deacetylases (KDACs, also known as histone deacetylases (HDACs)) (1). The enzymatic machinery involved in lysine acetylation is evolutionary conserved in all forms of life (24). The role of acetylation has been extensively studied in the regulation of gene expression via modification of histones (5). Acetylation also plays important roles in controlling cellular metabolism (610), protein folding (11), and sister chromatid cohesion (12). Furthermore, acetylation has been implicated in regulating the beneficial effects of calorie restriction (13), a low nutrient diet without starvation, and aging. Based on these findings, it is proposed that the functional roles of acetylation in these processes are evolutionary conserved from yeast to mammals.Advancements in mass spectrometry (MS)-based proteomics have greatly facilitated identification of thousands of post-translational modification (PTM) sites in eukaryotic cells (1418). Proteome-wide mapping of PTM sites can provide important leads for analyzing the functional relevance of individual sites and a systems-wide view of the regulatory scope of post-translational modifications. Also, large-scale PTM datasets are an important resource for the in silico analysis of PTMs, which can broaden the understanding of modification site properties and their evolutionary trajectories.The budding yeast Saccharomyces cerevisiae is a commonly used unicellular eukaryotic model organism. Yeast has been used in many pioneering “-omics” studies, including sequencing of the first eukaryotic genome (19), systems-wide genetic interactions analysis (20, 21), MS-based comprehensive mapping of a eukaryotic proteome (22), and proteome-wide analysis of protein-protein interactions (23, 24). In addition, S. cerevisiae has been extensively used to study the molecular mechanisms of acetylation. Many lysine acetyltransferases and deacetylases were discovered in this organism (2, 25), and their orthologs were subsequently identified in higher eukaryotes. Furthermore, the functional roles of many well-studied acetylation sites on histones are conserved from yeast to mammals. Recent data from human and Drosophila cells show that acetylation is present on many highly conserved metabolic enzymes (2628). However, only a few dozen yeast acetylation sites are annotated in the Uniprot database. Given the presence of a well-conserved and elaborate acetylation machinery in yeast, we reasoned that many more acetylation sites exist in this organism that remained to be identified.Here we used high resolution mass spectrometry-based proteomics to investigate the scope of acetylation in S. cerevisiae. We identified about 4000 unique acetylation sites in this important model organism. Bioinformatic analysis of yeast acetylation sites and comparison with previously identified human and Drosophila acetylation sites indicates that many acetylation sites are evolutionary conserved. Furthermore, quantitative analysis of the Rpd3-regulated acetylation sites identified several nuclear proteins that showed increased acetylation in rpd3 knockout cells. Our results provide a systems-wide view of acetylation in budding yeast, and a rich dataset for functional analysis of acetylation sites in this organism.  相似文献   
23.
Legume–rhizobia symbioses play a major role in food production for an ever growing human population. In this symbiosis, dinitrogen is reduced (“fixed”) to ammonia by the rhizobial nitrogenase enzyme complex and is secreted to the plant host cells, whereas dicarboxylic acids derived from photosynthetically produced sucrose are transported into the symbiosomes and serve as respiratory substrates for the bacteroids. The symbiosome membrane contains high levels of SST1 protein, a sulfate transporter. Sulfate is an essential nutrient for all living organisms, but its importance for symbiotic nitrogen fixation and nodule metabolism has long been underestimated. Using chemical imaging, we demonstrate that the bacteroids take up 20‐fold more sulfate than the nodule host cells. Furthermore, we show that nitrogenase biosynthesis relies on high levels of imported sulfate, making sulfur as essential as carbon for the regulation and functioning of symbiotic nitrogen fixation. Our findings thus establish the importance of sulfate and its active transport for the plant–microbe interaction that is most relevant for agriculture and soil fertility.  相似文献   
24.
Recent evidence suggests that lexical-semantic activation spread during language production can be dynamically shaped by contextual factors. In this study we investigated whether semantic processing modes can also affect lexical-semantic activation during word production. Specifically, we tested whether the processing of linguistic ambiguities, presented in the form of puns, has an influence on the co-activation of unrelated meanings of homophones in a subsequent language production task. In a picture-word interference paradigm with word distractors that were semantically related or unrelated to the non-depicted meanings of homophones we found facilitation induced by related words only when participants listened to puns before object naming, but not when they heard jokes with unambiguous linguistic stimuli. This finding suggests that a semantic processing mode of ambiguity perception can induce the co-activation of alternative homophone meanings during speech planning.  相似文献   
25.
26.
Organic solar cells that are free of burn‐in, the commonly observed rapid performance loss under light, are presented. The solar cells are based on poly(3‐hexylthiophene) (P3HT) with varying molecular weights and a nonfullerene acceptor (rhodanine‐benzothiadiazole‐coupled indacenodithiophene, IDTBR) and are fabricated in air. P3HT:IDTBR solar cells light‐soaked over the course of 2000 h lose about 5% of power conversion efficiency (PCE), in stark contrast to [6,6]‐Phenyl C61 butyric acid methyl ester (PCBM)‐based solar cells whose PCE shows a burn‐in that extends over several hundreds of hours and levels off at a loss of ≈34%. Replacing PCBM with IDTBR prevents short‐circuit current losses due to fullerene dimerization and inhibits disorder‐induced open‐circuit voltage losses, indicating a very robust device operation that is insensitive to defect states. Small losses in fill factor over time are proposed to originate from polymer or interface defects. Finally, the combination of enhanced efficiency and stability in P3HT:IDTBR increases the lifetime energy yield by more than a factor of 10 when compared with the same type of devices using a fullerene‐based acceptor instead.  相似文献   
27.
Heatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3°C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43°C, while monitoring whole‐canopy exchange of CO2 and H2O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3°C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales.  相似文献   
28.
For the improved understanding of biological systems on the nanoscale, it is necessary to enhance the resolution of light microscopy in the visible wavelength range beyond the limits of conventional epifluorescence microscopy (optical resolution of about 200 nm laterally, 600 nm axially). Recently, various far-field methods have been developed allowing a substantial increase of resolution ("superresolution microscopy", or "lightoptical nanoscopy"). This opens an avenue to 'nano-image' intact and even living cells, as well as other biostructures like viruses, down to the molecular detail. Thus, it is possible to combine light optical spatial nanoscale information with ultrastructure analyses and the molecular interaction information provided by molecular cell biology. In this review, we describe the principles of spectrally assigned localization microscopy (SALM) of biological nanostructures, focusing on a special SALM approach, spectral precision distance/position determination microscopy (SPDM) with physically modified fluorochromes (SPDM(Phymod) . Generally, this SPDM method is based on high-precision localization of fluorescent molecules, which can be discriminated using reversibly bleached states of the fluorophores for their optical isolation. A variety of application examples is presented, ranging from superresolution microscopy of membrane and cytoplasmic protein distribution to dual-color SPDM of nuclear proteins. At present, we can achieve an optical resolution of cellular structures down to the 20-nm range, with best values around 5 nm (~1/100 of the exciting wavelength).  相似文献   
29.
Gap junctions (GJ) are important determinants of cardiac conduction and the evidence has recently emerged that altered distribution of these junctions and changes in the expression of their constituent connexins (Cx) may lead to abnormal coupling between cardiomyocytes and likely contribute to arrhythmogenesis. However, it is largely unknown whether changes in the expression and distribution of the major cardiac GJ protein, Cx43, is a general feature of diverse chronic myocardial diseases or is confined to some particular pathophysiological settings. In the present study, we therefore set out to investigate qualitatively and quantitatively the distribution and expression of Cx43 in normal human myocardium and in patients with dilated (DCM), ischemic (ICM), and inflammatory cardiomyopathies (MYO). Left ventricular tissue samples were obtained at the time of cardiac transplantation and investigated with immunoconfocal and electron microscopy. As compared with the control group, Cx43 labeling in myocytes bordering regions of healed myocardial infarction (ICM), small areas of replacement fibrosis (DCM) and myocardial inflammation (MYO) was found to be highly disrupted instead of being confined to the intercalated discs. In all groups, myocardium distant from these regions showed an apparently normal Cx43 distribution at the intercalated discs. Quantitative immunoconfocal analyis of Cx43 in the latter myocytes revealed that the Cx43 area per myocyte area or per myocyte volume is significantly decreased by respectively 30 and 55% in DCM, 23 and 48% in ICM, and by 21 and 40% in MYO as compared with normal human myocardium. In conclusion, focal disorganization of GJ distribution and down-regulation of Cx43 are typical features of myocardial remodeling that may play an important role in the development of an arrhythmogenic substrate in human cardiomyopathies.  相似文献   
30.
The exclusive use of characters coding for specific life stages may bias tree reconstruction. If characters from several life stages are coded, the type of coding becomes important. Here, we simulate the influence on tree reconstruction of morphological characters of Odonata larvae incorporated into a data matrix based on the adult body under different coding schemes. For testing purposes, our analysis is focused on a well‐supported hypothesis: the relationships of the suborders Zygoptera, ‘Anisozygoptera’, and Anisoptera. We studied the cephalic morphology of Epiophlebia, a key taxon among Odonata, and compared it with representatives of Zygoptera and Anisoptera in order to complement the data matrix. Odonate larvae are characterized by a peculiar morphology, such as the specific head form, mouthpart configuration, ridge configuration, cephalic musculature, and leg and gill morphology. Four coding strategies were used to incorporate the larval data: artificial coding (AC), treating larvae as independent terminal taxa; non‐multistate coding (NMC), preferring the adult life stage; multistate coding (MC); and coding larval and adult characters separately (SC) within the same taxon. As expected, larvae are ‘monophyletic’ in the AC strategy, but with anisopteran and zygopteran larvae as sister groups. Excluding larvae in the NMC approach leads to strong support for both monophyletic Odonata and Epiprocta, whereas MC erodes phylogenetic signal completely. This is an obvious result of the larval morphology leading to many multistate characters. SC results in the strongest support for Odonata, and Epiprocta receives the same support as with NMC. Our results show the deleterious effects of larval morphology on tree reconstruction when multistate coding is applied. Coding larval characters separately is still the best approach in a phylogenetic framework. © 2015 The Linnean Society of London  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号