首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4580篇
  免费   406篇
  4986篇
  2024年   3篇
  2023年   52篇
  2022年   80篇
  2021年   205篇
  2020年   85篇
  2019年   121篇
  2018年   134篇
  2017年   125篇
  2016年   199篇
  2015年   350篇
  2014年   365篇
  2013年   383篇
  2012年   504篇
  2011年   466篇
  2010年   264篇
  2009年   190篇
  2008年   263篇
  2007年   242篇
  2006年   196篇
  2005年   176篇
  2004年   125篇
  2003年   145篇
  2002年   125篇
  2001年   15篇
  2000年   13篇
  1999年   18篇
  1998年   18篇
  1997年   16篇
  1996年   7篇
  1995年   6篇
  1994年   9篇
  1993年   7篇
  1992年   6篇
  1991年   5篇
  1990年   10篇
  1989年   4篇
  1988年   4篇
  1987年   5篇
  1982年   5篇
  1980年   3篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1973年   6篇
  1972年   3篇
  1971年   2篇
  1969年   3篇
  1967年   4篇
  1966年   3篇
  1965年   2篇
排序方式: 共有4986条查询结果,搜索用时 15 毫秒
991.
Major histocompatibility complex class I proteins play a key role in the recognition and presentation of peptide antigens to the host immune system. The structure of various major histocompatibility complex class I proteins has been determined experimentally in complex with several antigenic peptides. However, the structure in the unbound (empty) form is not known. To study the conformational dynamics of the empty major histocompatibility complex class I molecule comparative molecular dynamics simulations have been performed starting from the crystal structure of a peptide bound class I peptide-binding domain in the presence and absence of a peptide ligand. Simulations including the bound peptide stayed close to the experimental start structure at both simulation temperatures (300 and 355 K) during the entire simulation of 26 ns. Several independent simulations in the absence of peptide indicate that the empty domain may not adopt a single defined conformation but is conformationally significantly more heterogeneous in particular within the alpha-helices that flank the peptide binding cleft. The calculated conformational dynamics along the protein chain correlate well with available spectroscopic data and with the observed site-specific sensitivity of the empty class I protein to proteolytic digestion. During the simulations at 300 K the binding region for the peptide N-terminus stayed close to the conformation in the bound state, whereas the anchor region for the C-terminus showed significantly larger conformational fluctuations. This included a segment at the beginning of the second alpha-helix in the domain that is likely to be involved in the interaction with the chaperone protein tapasin during the peptide-loading process. The simulation studies further indicate that peptide binding at the C- and N-terminus may follow different mechanisms that involve different degrees of induced conformational changes in the peptide-binding domain. In particular binding of the peptide C-terminus may require conformational stabilization by chaperone proteins during peptide loading.  相似文献   
992.
Data are presented from a 16-month study of proboscis monkeys in an area of mixed coastal forest in Sarawak. The population density, social organization, and feeding and ranging behavior are described in detail. Results are compared with those from other primates in an attempt to understand why females of certain species (including proboscis monkeys) transfer between social groups. The scarcity of available food and reasons for the limited habitat preferences of proboscis monkeys are also discussed.  相似文献   
993.
Computational visual attention systems have been constructed in order for robots and other devices to detect and locate regions of interest in their visual world. Such systems often attempt to take account of what is known of the human visual system and employ concepts, such as ‘active vision’, to gain various perceived advantages. However, despite the potential for gaining insights from such experiments, the computational requirements for visual attention processing are often not clearly presented from a biological perspective. This was the primary objective of this study, attained through two specific phases of investigation: 1) conceptual modeling of a top-down-bottom-up framework through critical analysis of the psychophysical and neurophysiological literature, 2) implementation and validation of the model into robotic hardware (as a representative of an active vision system). Seven computational requirements were identified: 1) transformation of retinotopic to egocentric mappings, 2) spatial memory for the purposes of medium-term inhibition of return, 3) synchronization of ‘where’ and ‘what’ information from the two visual streams, 4) convergence of top-down and bottom-up information to a centralized point of information processing, 5) a threshold function to elicit saccade action, 6) a function to represent task relevance as a ratio of excitation and inhibition, and 7) derivation of excitation and inhibition values from object-associated feature classes. The model provides further insight into the nature of data representation and transfer between brain regions associated with the vertebrate ‘active’ visual attention system. In particular, the model lends strong support to the functional role of the lateral intraparietal region of the brain as a primary area of information consolidation that directs putative action through the use of a ‘priority map’.  相似文献   
994.
Rapid parasite adaptation drives selection for high recombination rates   总被引:2,自引:0,他引:2  
The Red Queen hypothesis proposes that sex is maintained through selection pressure imposed by coevolving parasites: susceptible hosts are able to escape parasite pressure by recombining their genome to create resistant offspring. However, previous theoretical studies have shown that the Red Queen typically selects against sex unless selection is strong, arguing that high rates of recombination cannot evolve when parasites are of low virulence. Here we show that under the biologically plausible assumption of a severe fitness cost for parasites that fail to infect, the Red Queen can cause selection for high recombination rates, and that the strength of virulence is largely irrelevant to the direction of selection for increased recombination rates. Strong selection on parasites and short generation times make parasites usually better adapted to their hosts than vice versa and can thus favor higher recombination rates in hosts. By demonstrating the importance of host-imposed selection on parasites, our findings resolve previously reported conflicting results.  相似文献   
995.
Early Triassic chirotherian footprint assemblages from Poland, Germany, and Morocco are important for understanding archosaur evolution in the aftermath of the Permian-Triassic crisis. However, their ichnotaxonomy is confusing because various authors have interpreted their diversity differently. After an analysis and ichnotaxonomic re-assessment, the presence of the ichnogenera Brachychirotherium, Isochirotherium, and Chirotherium in these assemblages is not supported. Distant similarities with these ichnotaxa are functions of extra morphological variation and substrate-related factors. Instead, Early Triassic chirotherian footprints described under these names are assigned here to the ichnogenus Protochirotherium and to a more slender morphotype identified as Synaptichnium. In particular, Protochirotherium appears to be more widely distributed in central Pangea as a characteristic morphotype reflecting a distinct stage in archosaur evolution. Trackmakers were nonarchosaurian archosauriforms or, alternatively, stem-group crocodylians. Morphologically and temporally these footprints match the hypothetical ancestor of the Chirotherium barthii trackmaker. Chirotherium barthii appears by the beginning of the Middle Triassic. Because of its restricted stratigraphic range, and its wider distribution in central Pangea, Protochirotherium also has biostratigraphic significance for this region and can be considered as an indicator of Early Triassic-aged strata.  相似文献   
996.
The precise polarization and orientation of developing neurons is essential for the correct wiring of the brain. In pyramidal excitatory neurons, polarization begins with the sprouting of opposite neurites, which later define directed migration and axo-dendritic domains. We here show that endogenous N-cadherin concentrates at one pole of the newborn neuron, from where the first neurite subsequently emerges. Ectopic N-cadherin is sufficient to favour the place of appearance of the first neurite. The Golgi and centrosome move towards this newly formed morphological pole in a second step, which is regulated by PI3K and the actin/microtubule cytoskeleton. Moreover, loss of function experiments in vivo showed that developing neurons with a non-functional N-cadherin misorient their cell axis. These results show that polarization of N-cadherin in the immediate post-mitotic stage is an early and crucial mechanism in neuronal polarity.  相似文献   
997.
FasL and gamma interferon (IFN-gamma) are produced by activated T cells and NK cells and synergistically induce apoptosis. Although both cytokines can also elicit proinflammatory responses, a possible cross talk of these ligands with respect to nonapoptotic signaling has been poorly addressed. Here, we show that IFN-gamma sensitizes KB cells for apoptosis induction by facilitating death-inducing signaling complex (DISC)-mediated caspase 8 processing. Moreover, after protection against death receptor-induced apoptosis by caspase inhibition or Bcl2 overexpression, IFN-gamma also sensitized for Fas- and TRAIL death receptor-mediated NF-kappaB activation leading to synergistic upregulation of a variety of proinflammatory genes. In contrast, Fas-mediated activation of JNK, p38, and p42/44 occurred essentially independent from IFN-gamma sensitization, indicating that the apoptosis- and NF-kappaB-related FasL-IFN-gamma cross talk was not due to a simple global enhancement of Fas signaling. Overexpression of FLIP(L) and FLIP(S) inhibited Fas- as well as TRAIL-mediated NF-kappaB activation and apoptosis induction in IFN-gamma-primed cells suggesting that both responses are coregulated at the level of the DISC.  相似文献   
998.
999.
1000.
STOMATAL CYTOKINESIS DEFECTIVE1 (SCD1) encodes a putative Rab guanine nucleotide exchange factor that functions in membrane trafficking and is required for cytokinesis and cell expansion in Arabidopsis thaliana. Here, we show that the loss of SCD2 function disrupts cytokinesis and cell expansion and impairs fertility, phenotypes similar to those observed for scd1 mutants. Genetic and biochemical analyses showed that SCD1 function is dependent upon SCD2 and that together these proteins are required for plasma membrane internalization. Further specifying the role of these proteins in membrane trafficking, SCD1 and SCD2 proteins were found to be associated with isolated clathrin-coated vesicles and to colocalize with clathrin light chain at putative sites of endocytosis at the plasma membrane. Together, these data suggest that SCD1 and SCD2 function in clathrin-mediated membrane transport, including plasma membrane endocytosis, required for cytokinesis and cell expansion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号