首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5729篇
  免费   544篇
  2023年   29篇
  2022年   77篇
  2021年   182篇
  2020年   91篇
  2019年   108篇
  2018年   124篇
  2017年   137篇
  2016年   181篇
  2015年   330篇
  2014年   388篇
  2013年   399篇
  2012年   547篇
  2011年   472篇
  2010年   289篇
  2009年   246篇
  2008年   393篇
  2007年   337篇
  2006年   340篇
  2005年   321篇
  2004年   301篇
  2003年   258篇
  2002年   258篇
  2001年   51篇
  2000年   29篇
  1999年   45篇
  1998年   44篇
  1997年   37篇
  1996年   34篇
  1995年   25篇
  1994年   25篇
  1993年   23篇
  1992年   17篇
  1991年   17篇
  1990年   14篇
  1989年   10篇
  1988年   5篇
  1987年   9篇
  1986年   4篇
  1985年   11篇
  1984年   5篇
  1983年   5篇
  1982年   5篇
  1981年   3篇
  1979年   3篇
  1977年   5篇
  1976年   3篇
  1974年   5篇
  1973年   4篇
  1972年   3篇
  1948年   4篇
排序方式: 共有6273条查询结果,搜索用时 31 毫秒
201.
The conformational equilibria of Mg·ATP in solution is studied using molecular dynamics (MD) augmented with umbrella sampling methods. Free energy comparisons show that the Mg2+ ion is equally likely to coordinate the oxygens of the two end phosphates, or of all three phosphates. The MD trajectories reveal two major degrees of freedom of the Mg·ATP molecule in solution, and we compute the free energy as a function of these variables, and determine its elastic properties. Comparing the free energy function with several crystallographic structures of ATP analogs, we find that the crystal structures correspond to states where ATP would be elastically strained. The average water density around Mg·ATP is investigated to show the average number of hydrogen bonds and the hydrophobicity.  相似文献   
202.
Proliferation and differentiation of satellite cells are critical in the regeneration of atrophied muscle following immobilization and aging. We hypothesized that impaired satellite cell function is responsible for the atrophy of skeletal muscle also seen in cirrhosis. Myostatin and insulin-like growth factor 1 (IGF1) have been identified to be positive and negative regulators, respectively, of satellite cell function. Using a rat model of cirrhosis [portacaval anastamosis (PCA)] and sham-operated controls, we examined the expression of myostatin, its receptor activinR2b, and its downstream messenger cyclin-dependent kinase inhibitor p21 (CDKI p21) as well as IGF1 and its receptor in the gastrocnemius muscle. Expression of PCNA, a marker of proliferation, and myogenic regulatory factors (myoD, myf5, and myogenin), markers of differentiation of satellite cells, were also measured. Real- time PCR for mRNA and Western blot assay for protein quantification were performed. PCA rats had lower body weight and gastrocnemius weight compared with sham animals (P < 0.05). PCNA and myogenic regulatory factors were lower in PCA rats (P < 0.05). Myostatin, activinR2b, and CDKI p21 were higher in the PCA animals (P < 0.05). The expression of IGF1 and its receptor was lower in liver and skeletal muscle of PCA animals (P < 0.05). These data suggest that skeletal muscle atrophy seen in the portacaval shunted rats is a consequence of impaired satellite cell proliferation and differentiation mediated, in part, by higher myostatin and lower IGF1 expression.  相似文献   
203.
Glyco-optimization (OPopS) of aminoglycosides has been performed by replacing the existing sugar moiety with a variety of sugar derivatives. Glycosylation of the 6-position of nebramine provided a library of novel 4,6-linked aminoglycosides (AMGs). Among them, compounds 8b,g,i,l, and 8u with 2"-amino, 2",3"-diamino, 2",4"-diamino, 3",4"-diamino, 3"-amino groups, respectively, showed significant antimicrobial activity against Gram-(+) and -(-) bacteria. Several were particularly potent against Pseudomonus aeruginosa with MICs in the 1-2 microg/mL range.  相似文献   
204.
205.
206.
207.
Vertebrate axis patterning depends on cell and extracellular matrix (ECM) repositioning and proper cell-ECM interactions. However, there are few in vivo data addressing how large-scale tissue deformations are coordinated with the motion of local cell ensembles or the displacement of ECM constituents. Combining the methods of dynamic imaging and experimental biology allows both cell and ECM fate-mapping to be correlated with ongoing tissue deformations. These fate-mapping studies suggest that the axial ECM components "move" both as a composite meshwork and as autonomous particles, depending on the length scale being examined. Cells are also part of this composite, and subject to passive displacements resulting from tissue deformations. However, in contrast to the ECM, cells are self-propelled. The net result of cell and ECM displacements, along with proper ECM-cell adhesion, is the assembly of new tissue architecture. Data herein show that disruption of normal cell-ECM interactions during axis formation results in developmental abnormalities and a disorganization of the ECM. Our goal in characterizing the global displacement patterns of axial cells and ECM is to provide critical information regarding existing strain fields in the segmental plate and paraxial mesoderm. Deducing the mechanical influences on cell behavior is critical, if we are to understand vertebral axis patterning. Supplementary material for this article is available online at http://www.mrw.interscience.wiley.com/suppmat/1542-975X/suppmat/72/v72.266.html.  相似文献   
208.
Abundant nonfibrillar oligomeric intermediates are a common feature of amyloid formation, and these oligomers, rather than the final fibers, have been suggested to be the toxic species in some amyloid diseases. Whether such oligomers are critical intermediates for fiber assembly or form in an alternate, potentially separable pathway, however, remains unclear. Here we study the polymerization of the amyloidogenic yeast prion protein Sup35. Rapid polymerization occurs in the absence of observable intermediates, and both targeted kinetic and direct single-molecule fluorescence measurements indicate that fibers grow by monomer addition. A three-step model (nucleation, monomer addition, and fiber fragmentation) accurately accounts for the distinctive kinetic features of amyloid formation, including weak concentration dependence, acceleration by agitation, and sigmoidal shape of the polymerization time course. Thus, amyloid growth can occur by monomer addition in a reaction distinct from and competitive with formation of potentially toxic oligomeric intermediates.  相似文献   
209.
The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the α-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for the host, the wMel–D. melanogaster symbiosis is now an ideal system for studying the biology and evolution of Wolbachia infections.  相似文献   
210.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号