首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4593篇
  免费   461篇
  5054篇
  2024年   3篇
  2023年   32篇
  2022年   72篇
  2021年   157篇
  2020年   78篇
  2019年   92篇
  2018年   110篇
  2017年   116篇
  2016年   161篇
  2015年   284篇
  2014年   330篇
  2013年   333篇
  2012年   428篇
  2011年   392篇
  2010年   246篇
  2009年   208篇
  2008年   312篇
  2007年   263篇
  2006年   271篇
  2005年   245篇
  2004年   237篇
  2003年   181篇
  2002年   206篇
  2001年   45篇
  2000年   18篇
  1999年   29篇
  1998年   25篇
  1997年   24篇
  1996年   26篇
  1995年   15篇
  1994年   15篇
  1993年   19篇
  1992年   7篇
  1991年   12篇
  1990年   9篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   4篇
  1985年   6篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1979年   3篇
  1967年   4篇
  1965年   2篇
  1964年   1篇
  1963年   2篇
  1954年   1篇
排序方式: 共有5054条查询结果,搜索用时 0 毫秒
71.
Stem cells in different regions of the nervous system give rise to different types of mature cells. This diversity is assumed to arise in response to local environmental differences, but the contribution of cell-intrinsic differences between stem cells has been unclear. At embryonic day (E)14, neural crest stem cells (NCSCs) undergo primarily neurogenesis in the gut but gliogenesis in nerves. Yet gliogenic and neurogenic factors are expressed in both locations. NCSCs isolated by flow-cytometry from E14 sciatic nerve and gut exhibited heritable, cell-intrinsic differences in their responsiveness to lineage determination factors. Gut NCSCs were more responsive to neurogenic factors, while sciatic nerve NCSCs were more responsive to gliogenic factors. Upon transplantation of uncultured NCSCs into developing peripheral nerves in vivo, sciatic nerve NCSCs gave rise only to glia, while gut NCSCs gave rise primarily to neurons. Thus, cell fate in the nerve was stem cell determined.  相似文献   
72.
Within the secretory pathway, most proteins involved in vesicle formation, motor recruitment and vesicle tethering are not integral membrane proteins but, rather, peripheral membrane proteins recruited to the relevant organelles from the cytosol. From recent studies on diverse organelles, it appears that such recruitment is usually mediated by binding to a labile determinant, such as an activated G protein or a short-lived lipid species, whose distribution is restricted to a single organelle. This suggests that these determinants are what specify organelle identity, and raises interesting questions about how they are generated in an organelle-specific fashion.  相似文献   
73.
We had previously reported that systemic overexpression of the alpha(1B)-adrenergic receptor (AR) in a transgenic mouse induced a neurodegenerative disease that resembled the parkinsonian-like syndrome called multiple system atrophy (MSA). We now report that our mouse model has cytoplasmic inclusion bodies that colocalize with oligodendrocytes and neurons, are positive for alpha-synuclein and ubiquitin, and therefore may be classified as a synucleinopathy. Alpha-synuclein monomers as well as multimers were present in brain extracts from both normal and transgenic mice. However, similar to human MSA and other synucleinopathies, transgenic mice showed an increase in abnormal aggregated forms of alpha-synuclein, which also increased its nitrated content with age. However, the same extracts displayed decreased phosphorylation of alpha-synuclein. Other traits particular to MSA such as Purkinje cell loss in the cerebellum and degeneration of the intermediolateral cell columns of the spinal cord also exist in our mouse model but differences still exist between them. Interestingly, long-term therapy with the alpha(1)-AR antagonist, terazosin, resulted in protection against the symptomatic as well as the neurodegeneration and alpha-synuclein inclusion body formation, suggesting that signaling of the alpha(1B)-AR is the cause of the pathology. We conclude that overexpression of the alpha(1B)-AR can cause a synucleinopathy similar to other parkinsonian syndromes.  相似文献   
74.
Targeted inactivation of neurons by expression of toxic gene products is a useful tool to assign behavioral functions to specific neurons or brain structures. Of a variety of toxic gene products tested, tetanus neurotoxin light chain (TNT) has the least severe side effects and can completely block chemical synapses. By using the GAL4 system to drive TNT expression in a subset of chemo- and mechanosensory neurons, we detected walking and flight defects consistent with blocking of relevant sensory information. We also found, for the first time, an olfactory behavioral phenotype associated with blocking of a specific subset of antennal chemoreceptors. Similar behavioral experiments with GAL4 lines expressing in different subsets of antennal chemoreceptors should contribute to an understanding of olfactory coding in Drosophila. To increase the utility of the GAL4 system for such purposes, we have designed an inducible system that allows us to circumvent lethality caused by TNT expression during early development.  相似文献   
75.
Great strides in understanding the molecular underpinnings of RNA catalysis have been achieved with advances in RNA structure determination by NMR spectroscopy and X-ray crystallography. Despite these successes the functional relevance of a given structure can only be assessed upon comparison with biochemical studies performed on functioning RNA molecules. The hairpin ribozyme presents an excellent case study for such a comparison. The active site is comprised of two stems each with an internal loop that forms a series of non-canonical base pairs. These loops dock into each other to create an active site for catalysis. Recently, three independent structures have been determined for this catalytic RNA, including two NMR structures of the isolated loop A and loop B stems and a high-resolution crystal structure of both loops in a docked conformation. These structures differ significantly both in their tertiary fold and the nature of the non-canonical base pairs formed within each loop. Several of the chemical groups required to achieve a functioning hairpin ribozyme have been determined by nucleotide analog interference mapping (NAIM). Here we compare the three hairpin structures with previously published NAIM data to assess the convergence between the structural and functional data. While there is significant disparity between the interference data and the individual NMR loop structures, there is almost complete congruity with the X-ray structure. The only significant differences cluster around an occluded pocket adjacent to the scissile phosphate. These local differences may suggest a role for these atoms in the transition state, either directly in chemistry or via a local structural rearrangement.  相似文献   
76.
Bacterial expression and characterization of mature apolipoprotein A-I   总被引:2,自引:0,他引:2  
Plasma levels of apolipoprotein A-I (apoA-I) are correlated with reduced incidence of heart disease due to the critical role of this protein in reverse cholesterol transport. Because of its diversity of function and poorly understood structure, much research has sought to understand how the structure of apoA-I facilitates its function. A popular approach has been the use of site-directed mutagenesis followed by structural and functional studies. There are a wide variety of expression systems available to produce these mutant proteins including eukaryotic cell lines and prokaryotic cells such as Escherichia coli. Expression in a bacterial system is generally favorable because it can produce large amounts of pure protein quickly and economically through the use of affinity tags on the expressed protein. Unfortunately, many of these systems are not ideal for the production of apolipoproteins because, in many cases, the proteolytic digestion required to remove the affinity tag also cleaves the target protein. Here we describe a method that produces large amounts of recombinant protein that is easily purified using a histidine (His) affinity tag that is cleaved with IgA protease from Neisseria gonorrhoeae. This enzyme does not cleave the wild type apoA-I sequence, leaving intact, mature apoA-I (containing a Thr-Pro- on the N-terminus). We show that this recombinant protein is similar to wild type protein in structure and function using circular dichroism analysis, lipid clearance assays, recombinant particle formation and cholesterol efflux assays. This system is particularly useful for the bacterial production of apolipoproteins because of the extreme specificity of IgA protease for its target cleavage site.  相似文献   
77.
Mammalian cells in culture rely on sources of carbohydrates to supply the energy requirements for proliferation. In addition, carbohydrates provide a large source of the carbon supply for supporting various other metabolic activities, including the intermediates involved in the protein glycosylation pathway. Glucose and galactose, in particular, are commonly used sugars in culture media for these purposes. However, there exists a very large repertoire of other sugars in nature, and many that have been chemically synthesized. These sugars are particularly interesting because they can be utilized by cells in culture in distinct ways. In the present work it has been found that many infrequently used sugars, and the corresponding cellular response towards them as substrates, led to differences in the protein N‐glycosylation profile of a recombinant glycoprotein. The selective media supplementation of raffinose, trehalose, turanose, palatinose, melezitose, psicose, lactose, lactulose, and mannose were found to be capable of redirecting N‐glycan oligosaccharide profiles. Despite this shifting of protein glycosylation, there were no other adverse changes in culture performance, including both cell growth and cellular productivity over a wide range of supplemented sugar concentrations. The approach presented highlights a potential means towards both the targeted shifting of protein glycosylation profiles and ensuring recombinant protein comparability, which up to this point in time has remained under‐appreciated for these under‐utilized compounds. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:511–522, 2017  相似文献   
78.
79.
Several arenaviruses, including Lassa virus (LASV), are causative agents of hemorrhagic fever, for which effective therapeutic options are lacking. The LASV envelope glycoprotein (GP) gene was used to generate lentiviral pseudotypes to identify small-molecule inhibitors of viral entry. A benzimidazole derivative with potent antiviral activity was identified from a high-throughput screen utilizing this strategy. Subsequent lead optimization for antiviral activity identified a modified structure, ST-193, with a 50% inhibitory concentration (IC(50)) of 1.6 nM against LASV pseudotypes. ST-193 inhibited pseudotypes generated with other arenavirus envelopes as well, including the remaining four commonly associated with hemorrhagic fever (IC(50)s for Junín, Machupo, Guanarito, and Sabiá were in the 0.2 to 12 nM range) but exhibited no antiviral activity against pseudotypes incorporating either the GP from the LASV-related arenavirus lymphocytic choriomeningitis virus (LCMV) or the unrelated G protein from vesicular stomatitis virus, at concentrations of up to 10 microM. Determinants of ST-193 sensitivity were mapped through a combination of LASV-LCMV domain-swapping experiments, genetic selection of viral variants, and site-directed mutagenesis. Taken together, these studies demonstrate that sensitivity to ST-193 is dictated by a segment of about 30 amino acids within the GP2 subunit. This region includes the carboxy-terminal region of the ectodomain and the predicted transmembrane domain of the envelope protein, revealing a novel antiviral target within the arenavirus envelope GP.  相似文献   
80.
Extensive copy-number variation of the human olfactory receptor gene family   总被引:3,自引:0,他引:3  
As much as a quarter of the human genome has been reported to vary in copy number between individuals, including regions containing about half of the members of the olfactory receptor (OR) gene family. We have undertaken a detailed study of copy-number variation of ORs to elucidate the selective and mechanistic forces acting on this gene family and the true impact of copy-number variation on human OR repertoires. We argue that the properties of copy-number variants (CNVs) and other sets of large genomic regions violate the assumptions of statistical methods that are commonly used in the assessment of gene enrichment. Using more appropriate methods, we provide evidence that OR enrichment in CNVs is not due to positive selection but is because of OR preponderance in segmentally duplicated regions, which are known to be frequently copy-number variable, and because purifying selection against CNVs is lower in OR-containing regions than in regions containing essential genes. We also combine multiplex ligation-dependent probe amplification (MLPA) and PCR to assay the copy numbers of 37 candidate CNV ORs in a panel of ~50 human individuals. We confirm copy-number variation of 18 ORs but find no variation in this human-diversity panel for 16 other ORs, highlighting the caveat that reported intervals often overrepresent true CNVs. The copy-number variation we describe is likely to underpin significant variation in olfactory abilities among human individuals. Finally, we show that both homology-based and homology-independent processes have played a recent role in remodeling the OR family.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号