首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4609篇
  免费   461篇
  5070篇
  2024年   3篇
  2023年   32篇
  2022年   72篇
  2021年   158篇
  2020年   78篇
  2019年   92篇
  2018年   110篇
  2017年   118篇
  2016年   162篇
  2015年   288篇
  2014年   330篇
  2013年   324篇
  2012年   434篇
  2011年   394篇
  2010年   248篇
  2009年   208篇
  2008年   313篇
  2007年   262篇
  2006年   269篇
  2005年   245篇
  2004年   241篇
  2003年   185篇
  2002年   209篇
  2001年   46篇
  2000年   18篇
  1999年   28篇
  1998年   25篇
  1997年   23篇
  1996年   26篇
  1995年   14篇
  1994年   15篇
  1993年   19篇
  1992年   7篇
  1991年   13篇
  1990年   10篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   2篇
  1965年   3篇
  1963年   2篇
  1961年   1篇
  1954年   1篇
  1934年   1篇
排序方式: 共有5070条查询结果,搜索用时 15 毫秒
101.
From nutrient uptake to chemoreception to synaptic transmission, many systems in cell biology depend on molecules diffusing and binding to membrane receptors. Mathematical analysis of such systems often neglects the fact that receptors process molecules at finite kinetic rates. A key example is the celebrated formula of Berg and Purcell for the rate that cell surface receptors capture extracellular molecules. Indeed, this influential result is only valid if receptors transport molecules through the cell wall at a rate much faster than molecules arrive at receptors. From a mathematical perspective, ignoring receptor kinetics is convenient because it makes the diffusing molecules independent. In contrast, including receptor kinetics introduces correlations between the diffusing molecules because, for example, bound receptors may be temporarily blocked from binding additional molecules. In this work, we present a modeling framework for coupling bulk diffusion to surface receptors with finite kinetic rates. The framework uses boundary homogenization to couple the diffusion equation to nonlinear ordinary differential equations on the boundary. We use this framework to derive an explicit formula for the cellular uptake rate and show that the analysis of Berg and Purcell significantly overestimates uptake in some typical biophysical scenarios. We confirm our analysis by numerical simulations of a many-particle stochastic system.  相似文献   
102.
Since the first recorded infection of humans with H5N1 viruses of avian origin in 1997, sporadic human infections continue to occur with a staggering mortality rate of >60%. Although sustained human-to-human transmission has not occurred yet, there is a growing concern that these H5N1 viruses might acquire this trait and raise the specter of a pandemic. Despite progress in deciphering viral determinants of pathogenicity, we still lack crucial information on virus/immune system interactions pertaining to severe disease and high mortality associated with human H5N1 influenza virus infections. Using two human isolates of H5N1 viruses that differ in their pathogenicity in mice, we have defined mechanistic links among the rate of viral replication, mortality, CD8 T cell responses, and immunopathology. The extreme pathogenicity of H5N1 viruses was directly linked to the ability of the virus to replicate rapidly, and swiftly attain high steady-state titers in the lungs within 48 hours after infection. The remarkably high replication rate of the highly pathogenic H5N1 virus did not prevent the induction of IFN-β or activation of CD8 T cells, but the CD8 T cell response was ineffective in controlling viral replication in the lungs and CD8 T cell deficiency did not affect viral titers or mortality. Additionally, BIM deficiency ameliorated lung pathology and inhibited T cell apoptosis without affecting survival of mice. Therefore, rapidly replicating, highly lethal H5N1 viruses could simply outpace and overwhelm the adaptive immune responses, and kill the host by direct cytopathic effects. However, therapeutic suppression of early viral replication and the associated enhancement of CD8 T cell responses improved the survival of mice following a lethal H5N1 infection. These findings suggest that suppression of early H5N1 virus replication is key to the programming of an effective host response, which has implications in treatment of this infection in humans.  相似文献   
103.
Ecosystem water-use efficiency (eWUE; the ratio of net ecosystem productivity to evapotranspiration rate) is a complex landscape-scale parameter controlled by both physical and biological processes occurring in soil and plants. Leaf WUE (lWUE; the ratio of leaf CO2 assimilation rate to transpiration rate) is controlled at short time scales principally by leaf stomatal dynamics and this control varies among plant species. Little is known about how leaf-scale variation in lWUE influences landscape-scale variation in eWUE. We analyzed approximately seven thousand 30-min averaged eddy covariance observations distributed across 9 years in order to assess eWUE in two neighboring forest communities. Mean eWUE was 19% lower for the community in which Engelmann spruce and subalpine fir were dominant, compared to the community in which lodgepole pine was dominant. Of that 19% difference, 8% was attributed to residual bias in the analysis that favored periods with slightly drier winds for the spruce-fir community. In an effort to explain the remaining 11% difference, we assessed patterns in lWUE using C isotope ratios. When we focused on bulk tissue from older needles we detected significant differences in lWUE among tree species and between upper and lower canopy needles. However, when these differences were scaled to reflect vertical and horizontal leaf area distributions within the two communities, they provided no power to explain differences in eWUE that we observed in the eddy covariance data. When we focused only on bulk needle tissue of current-year needles for 3 of the 9 years, we also observed differences in lWUE among species and in needles from upper and lower parts of the canopy. When these differences in lWUE were scaled to reflect leaf area distributions within the two communities, we were able to explain 6.3% of the differences in eWUE in 1 year (2006), but there was no power to explain differences in the other 2 years (2003 and 2007). When we examined sugars extracted from needles at 3 different times during the growing season of 2007, we could explain 3.8–6.0% of the differences in eWUE between the two communities, but the difference in eWUE obtained from the eddy covariance record, and averaged over the growing season for this single year, was 32%. Thus, overall, after accounting for species effects on lWUE, we could explain little of the difference in eWUE between the two forest communities observed in the eddy covariance record. It is likely that water and C fluxes from soil, understory plants, and non-needle tissues, account for most of the differences observed in the eddy covariance data. For those cases where we could explain some of the difference in eWUE on the basis of species effects, we partitioned the scaled patterns in lWUE into two components: a component that is independent of canopy leaf area distribution, and therefore only dependent on species-specific differences in needle physiology; and a component that is independent of species differences in needle physiology, and only dependent on species-specific influences on canopy leaf area distribution. Only the component that is dependent on species influences on canopy leaf area distribution, and independent of inherent species differences in needle physiology, had potential to explain differences in eWUE between the two communities. Thus, when tree species effects are important, canopy structure, rather than species-specific needle physiology, has more potential to explain patterns in eWUE.  相似文献   
104.
Potassium‐ion batteries (PIBs) are an emerging, affordable, and environmentally friendly alternative to lithium‐ion batteries, with their further development driven by the need for suitably performing electrode materials capable of reversibly accommodating the relatively large K+. Layer‐structured manganese oxides are attractive as electrodes for PIBs, but suffer from structural instability and sluggish kinetics of K+ insertion/extraction, leading to poor rate capability. Herein, cobalt is successfully introduced at the manganese site in the KxMnO2 layered oxide electrode material and it is shown that with only 5% Co, the reversible capacity increases by 30% at 22 mA g‐1 and by 92% at 440 mA g‐1. In operando synchrotron X‐ray diffraction reveals that Co suppresses Jahn–Teller distortion, leading to more isotropic migration pathways for K+ in the interlayer, thus enhancing the ionic diffusion and consequently, rate capability. The detailed analysis reveals that additional phase transitions and larger volume change occur in the Co‐doped material as a result of layer gliding, with these associated with faster capacity decay, despite the overall capacity remaining higher than the pristine material, even after 500 cycles. These results assert the importance of understanding the detailed structural evolution that underpins performance that will inform the strategic design of electrode materials for high‐performance PIBs.  相似文献   
105.
The cell signaling pathways that are tightly regulated during development are often co-opted by cancer cells to allow them to escape from the constraints that normally limit cell growth and cell movement. In this regard, de-regulated signaling in cancer cells confers a number of key tumor-associated properties, including increased cell proliferation, decreased cell death, and increased cell motility. The identification of some of these critical signaling pathways in the nervous system has come from studies of inherited cancer syndromes in which affected individuals develop brain tumors. The study of brain tumors arising in patients with neurofibromatosis 1 (NF1), neurofibromatosis 2 (NF2), and tuberous sclerosis complex (TSC) has already uncovered several key intracellular signaling pathways important for modulating brain tumor growth. An in-depth analysis of these intracellular signaling pathways will not only lead to an improved understanding of the process of brain tumorigenesis, but may also provide important molecular targets for future therapeutic drug design.  相似文献   
106.

Background

Worldwide, finfish fisheries are receiving increasing assessment and regulation, slowly leading to more sustainable exploitation and rebuilding. In their wake, invertebrate fisheries are rapidly expanding with little scientific scrutiny despite increasing socio-economic importance.

Methods and Findings

We provide the first global evaluation of the trends, drivers, and population and ecosystem consequences of invertebrate fisheries based on a global catch database in combination with taxa-specific reviews. We also develop new methodologies to quantify temporal and spatial trends in resource status and fishery development. Since 1950, global invertebrate catches have increased 6-fold with 1.5 times more countries fishing and double the taxa reported. By 2004, 34% of invertebrate fisheries were over-exploited, collapsed, or closed. New fisheries have developed increasingly rapidly, with a decrease of 6 years (3 years) in time to peak from the 1950s to 1990s. Moreover, some fisheries have expanded further and further away from their driving market, encompassing a global fishery by the 1990s. 71% of taxa (53% of catches) are harvested with habitat-destructive gear, and many provide important ecosystem functions including habitat, filtration, and grazing.

Conclusions

Our findings suggest that invertebrate species, which form an important component of the basis of marine food webs, are increasingly exploited with limited stock and ecosystem-impact assessments, and enhanced management attention is needed to avoid negative consequences for ocean ecosystems and human well-being.  相似文献   
107.
108.
Triple-negative breast cancer (TNBC) represents an aggressive subtype, for which radiation and chemotherapy are the only options. Here we describe the identification of disulfiram, an FDA-approved drug used to treat alcoholism, as well as the related compound thiram, as the most potent growth inhibitors following high-throughput screens of 3185 compounds against multiple TNBC cell lines. The average IC50 for disulfiram was ~300 nM. Drug affinity responsive target stability (DARTS) analysis identified IQ motif-containing factors IQGAP1 and MYH9 as direct binding targets of disulfiram. Indeed, knockdown of these factors reduced, though did not completely abolish, cell growth. Combination treatment with 4 different drugs commonly used to treat TNBC revealed that disulfiram synergizes most effectively with doxorubicin to inhibit cell growth of TNBC cells. Disulfiram and doxorubicin cooperated to induce cell death as well as cellular senescence, and targeted the ESA+/CD24-/low/CD44+ cancer stem cell population. Our results suggest that disulfiram may be repurposed to treat TNBC in combination with doxorubicin.  相似文献   
109.
The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5%) of its precursor “silent” germline micronuclear genome by a process of “unscrambling” and fragmentation. The tiny macronuclear “nanochromosomes” typically encode single, protein-coding genes (a small portion, 10%, encode 2–8 genes), have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size) that vary from 469 bp to 66 kb long (mean ∼3.2 kb) and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%), suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb) suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing studies of rearrangements arising during evolution and disease.  相似文献   
110.
The present study evaluated the role of endothelial intermediate conductance calcium-sensitive potassium channels (IKCa) in the mechanism of endothelium-derived hyperpolarizing factor (EDHF)-mediated dilations in pressurized cerebral arteries. Male rat middle cerebral arteries (MCA) were mounted in an isolated vessel chamber, pressurized (85 mmHg), and luminally perfused (100 microl/min). Artery diameter was measured simultaneously with either endothelial intracellular Ca2+ concentration ([Ca2+]i; fura-2) or changes in endothelial membrane potential [4-[2-[6-(dioctylamino)-2-naphthalenyl]ethenyl]1-(3-sulfopropyl)-pyridinium (di-8-ANEPPS)]. Nitric oxide synthase and cyclooxygenase inhibitors were present throughout. Luminal application of UTP produced EDHF-mediated dilations that correlated with significant endothelial hyperpolarization. The dilation and endothelial hyperpolarization were virtually abolished by inhibitors of IKCa channels but not by selective inhibitors of small or large conductance KCa channels (apamin and iberiotoxin, respectively). Additionally, direct stimulation of endothelial IKCa channels with 1-ethyl-2-benzimidazolinone (1-EBIO) produced endothelial hyperpolarization and vasodilatation that were blocked by inhibitors of IKCa channels. 1-EBIO hyperpolarized the endothelium but did not affect endothelial [Ca2+]i. We conclude that the mechanism of EDHF-mediated dilations in cerebral arteries requires stimulation of endothelial IKCa channels to promote endothelial hyperpolarization and subsequent vasodilatation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号