首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5371篇
  免费   525篇
  国内免费   1篇
  2024年   4篇
  2023年   33篇
  2022年   85篇
  2021年   173篇
  2020年   89篇
  2019年   114篇
  2018年   130篇
  2017年   137篇
  2016年   191篇
  2015年   322篇
  2014年   375篇
  2013年   380篇
  2012年   487篇
  2011年   448篇
  2010年   284篇
  2009年   248篇
  2008年   358篇
  2007年   305篇
  2006年   302篇
  2005年   275篇
  2004年   262篇
  2003年   207篇
  2002年   222篇
  2001年   54篇
  2000年   28篇
  1999年   42篇
  1998年   35篇
  1997年   28篇
  1996年   27篇
  1995年   19篇
  1994年   19篇
  1993年   22篇
  1992年   20篇
  1991年   24篇
  1990年   17篇
  1989年   15篇
  1988年   13篇
  1987年   13篇
  1986年   13篇
  1985年   11篇
  1983年   5篇
  1982年   4篇
  1981年   5篇
  1980年   7篇
  1979年   5篇
  1977年   4篇
  1970年   3篇
  1969年   3篇
  1967年   3篇
  1965年   3篇
排序方式: 共有5897条查询结果,搜索用时 15 毫秒
51.
Human chorionic gonadotropin (hCG) stimulates the uptake of eight different amino acids and four nucleosides by Xenopus laevis ovarian follicles. This hormone also stimulates amino acid uptake in the follicles of another amphibian, Callyptocephallela caudiverbera. The stimulation of uptake is due to a reduction in the amino acid concentration required for half-maximal uptake velocity and not to an increment in Vmax. The effect of hCG does not require protein synthesis but requires physiological conditions of temperature and pH. Incorporation of radioactive exogenous amino acid into proteins is also stimulated by the hormone, but high-resolution electrophoresis shows that there are no drastic qualitative changes in the pattern of proteins synthesized at early times after hCG treatment. The effect of hCG on the uptake of exogenous amino acids does not appear to be required for oocyte maturation because other hormones such as progesterone and testosterone which induce maturation do not increase amino acid uptake. Also the concentration of hCG required for oocyte maturation is significantly lower than that required for an effect on amino acid transport. Inhibitors of oocyte maturation such as theophylline and cycloheximide do not inhibit the action of hCG on amino acid uptake by the amphibian follicles.  相似文献   
52.
BackgroundThe US Centers for Disease Control and Prevention has repeatedly called for Coronavirus Disease 2019 (COVID-19) vaccine equity. The objective our study was to measure equity in the early distribution of COVID-19 vaccines to healthcare facilities across the US. Specifically, we tested whether the likelihood of a healthcare facility administering COVID-19 vaccines in May 2021 differed by county-level racial composition and degree of urbanicity.Methods and findingsThe outcome was whether an eligible vaccination facility actually administered COVID-19 vaccines as of May 2021, and was defined by spatially matching locations of eligible and actual COVID-19 vaccine administration locations. The outcome was regressed against county-level measures for racial/ethnic composition, urbanicity, income, social vulnerability index, COVID-19 mortality, 2020 election results, and availability of nontraditional vaccination locations using generalized estimating equations.Across the US, 61.4% of eligible healthcare facilities and 76.0% of eligible pharmacies provided COVID-19 vaccinations as of May 2021. Facilities in counties with >42.2% non-Hispanic Black population (i.e., > 95th county percentile of Black race composition) were less likely to serve as COVID-19 vaccine administration locations compared to facilities in counties with <12.5% non-Hispanic Black population (i.e., lower than US average), with OR 0.83; 95% CI, 0.70 to 0.98, p = 0.030. Location of a facility in a rural county (OR 0.82; 95% CI, 0.75 to 0.90, p < 0.001, versus metropolitan county) or in a county in the top quintile of COVID-19 mortality (OR 0.83; 95% CI, 0.75 to 0.93, p = 0.001, versus bottom 4 quintiles) was associated with decreased odds of serving as a COVID-19 vaccine administration location.There was a significant interaction of urbanicity and racial/ethnic composition: In metropolitan counties, facilities in counties with >42.2% non-Hispanic Black population (i.e., >95th county percentile of Black race composition) had 32% (95% CI 14% to 47%, p = 0.001) lower odds of serving as COVID administration facility compared to facilities in counties with below US average Black population. This association between Black composition and odds of a facility serving as vaccine administration facility was not observed in rural or suburban counties. In rural counties, facilities in counties with above US average Hispanic population had 26% (95% CI 11% to 38%, p = 0.002) lower odds of serving as vaccine administration facility compared to facilities in counties with below US average Hispanic population. This association between Hispanic ethnicity and odds of a facility serving as vaccine administration facility was not observed in metropolitan or suburban counties.Our analyses did not include nontraditional vaccination sites and are based on data as of May 2021, thus they represent the early distribution of COVID-19 vaccines. Our results based on this cross-sectional analysis may not be generalizable to later phases of the COVID-19 vaccine distribution process.ConclusionsHealthcare facilities in counties with higher Black composition, in rural areas, and in hardest-hit communities were less likely to serve as COVID-19 vaccine administration locations in May 2021. The lower uptake of COVID-19 vaccinations among minority populations and rural areas has been attributed to vaccine hesitancy; however, decreased access to vaccination sites may be an additional overlooked barrier.

Inmaculada Hernandez and colleagues investigate the disparities in early-phase distribution of COVID-19 Vaccines across U.S. Counties.  相似文献   
53.
The ultrastructure of endoderm cells of the area pellucida has been analysed in the chick embryo by stereological methods. These cells show a specific subcellular evolution which can be correlated with several aspects of morphogenetic behaviour. The cell form coefficient (CFc) changes notably from stage 5 (0.683) to stage 8 (0.446) accompanying the transformation of this layer into a squamous epithelium. An increase of the nuclear surface density is observed and is discussed in relation to the control of nucleocytoplasmic interchange. The mitochondrial volume and surface densities remain constant (3.12% of cellular volume and 0.727 mitochondria/mu(3) respectively). The endodermal cells possess higher levels of vitelline reserves (lipid bodies, 6.97% and yolk droplets, 8.90%) than other cellular types of the chick embryo. This fact is discussed with respect to the role of the endoderm in the phagocytosis of yolk. The RER length density shows an increase that could be related to some specific changes of the extracellular matrix during this period, but this fact remains to be demonstrated in relation to changes of Golgi membranes.  相似文献   
54.
We tested for correlations in the degree of spatial similarity between algal and terrestrial plants communities along 5500 km of temperate Australian coastline and whether the strength of correlation weakens with increasing distance from the coast. We identified strong correlations between macroalgal and terrestrial plant communities within the first 100 km from shore, where the strength of these marine–terrestrial correlations indeed weakens with increasing distance inland. As such, our results suggest that marine‐driven community homogenization processes decompose with increasing distance from the shore toward inland. We speculate that the proximity to the marine environment produces lower levels of community turnover on land, and this effect decreases progressively farther inland. Our analysis suggests underlying ecological and evolutionary processes that give rise to continental‐scale biogeographic influence from sea to land.  相似文献   
55.
Plant phenology—the timing of cyclic or recurrent biological events in plants—offers insight into the ecology, evolution, and seasonality of plant‐mediated ecosystem processes. Traditionally studied phenologies are readily apparent, such as flowering events, germination timing, and season‐initiating budbreak. However, a broad range of phenologies that are fundamental to the ecology and evolution of plants, and to global biogeochemical cycles and climate change predictions, have been neglected because they are “cryptic”—that is, hidden from view (e.g., root production) or difficult to distinguish and interpret based on common measurements at typical scales of examination (e.g., leaf turnover in evergreen forests). We illustrate how capturing cryptic phenology can advance scientific understanding with two case studies: wood phenology in a deciduous forest of the northeastern USA and leaf phenology in tropical evergreen forests of Amazonia. Drawing on these case studies and other literature, we argue that conceptualizing and characterizing cryptic plant phenology is needed for understanding and accurate prediction at many scales from organisms to ecosystems. We recommend avenues of empirical and modeling research to accelerate discovery of cryptic phenological patterns, to understand their causes and consequences, and to represent these processes in terrestrial biosphere models.  相似文献   
56.
Background and Aims Pepper (Capsicum annuum) contains high levels of antioxidants, such as vitamins A and C and flavonoids. However, information on the role of these beneficial compounds in the physiology of pepper fruit remains scarce. Recent studies have shown that antioxidants in ripe pepper fruit play a key role in responses to temperature changes, and the redox state at the time of harvest affects the nutritional value for human consumption. In this paper, the role of antioxidant metabolism of pepper fruit during ripening and in the response to low temperature is addressed, paying particular attention to ascorbate, NADPH and the superoxide dismutase enzymatic system. The participation of chloroplasts, mitochondria and peroxisomes in the ripening process is also investigated.Scope and Results Important changes occur at a subcellular level during ripening of pepper fruit. Chloroplasts turn into chromoplasts, with drastic conversion of their metabolism, and the role of the ascorbate–glutathione cycle is essential. In mitochondria from red fruits, higher ascorbate peroxidase (APX) and Mn-SOD activities are involved in avoiding the accumulation of reactive oxygen species in these organelles during ripening. Peroxisomes, whose antioxidant capacity at fruit ripening is substantially affected, display an atypical metabolic pattern during this physiological stage. In spite of these differences observed in the antioxidative metabolism of mitochondria and peroxisomes, proteomic analysis of these organelles, carried out by 2-D electrophoresis and MALDI-TOF/TOF and provided here for the first time, reveals no changes between the antioxidant metabolism from immature (green) and ripe (red) fruits.Conclusions Taken together, the results show that investigation of molecular and enzymatic antioxidants from cell compartments, especially chloroplasts, mitochondria and peroxisomes, is a useful tool to study the physiology of pepper fruit, particularly in the context of expanding their shelf-life after harvest and in maintaining their nutritional value.  相似文献   
57.
58.
Analysis of the genome of the human pathogen, Aspergillus fumigatus, revealed the presence of several putative glutathione transferase (GST) open reading frames. Three A. fumigatus GST genes, termed gstA, B, and C, were cloned and recombinant proteins expressed in Escherichia coli. Functional analysis of recombinant gstA-C confirms that the enzymes exhibit GST activity and glutathione peroxidase activity. RT-PCR confirmed low basal expression of gstA and gstC which was markedly up-regulated (at least 4x-10x) in the presence of either H2O2 or 1-chloro-2,4-dinitrobenzene (CDNB). GstB expression was only observed in the presence of CDNB. These results demonstrate for the first time the existence of three functional GSTs in A. fumigatus and strongly suggest a role for these enzymes in the response of the organism to both oxidative stress and xenobiotic presence.  相似文献   
59.
Forward genetic screens provide a powerful approach for inferring gene function on the basis of the phenotypes associated with mutated genes. However, determining the causal mutation by traditional mapping and candidate gene sequencing is often the rate-limiting step, especially when analyzing many mutants. We report two genomic approaches for more rapidly determining the identity of the affected genes in Caenorhabditis elegans mutants. First, we report our use of restriction site-associated DNA (RAD) polymorphism markers for rapidly mapping mutations after chemical mutagenesis and mutant isolation. Second, we describe our use of genomic interval pull-down sequencing (GIPS) to selectively capture and sequence megabase-sized portions of a mutant genome. Together, these two methods provide a rapid and cost-effective approach for positional cloning of C. elegans mutant loci, and are also applicable to other genetic model systems.  相似文献   
60.
The reversible phosphorylation of proteins controlled by protein kinases and protein phosphatases is a major mechanism that regulates a wide variety of cellular processes. In contrast to C. elegans, recent studies in mammalian cells have highlighted a major role of serine/threonine protein phosphorylation in apoptosis. To illustrate the importance of dephosphorylation processes in apoptosis, this review will focus on recent studies suggesting that the interaction of the serine/threonine protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) with certain regulators of the Bcl-2 family is critically involved in the control of apoptosis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号