首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4563篇
  免费   455篇
  5018篇
  2024年   3篇
  2023年   32篇
  2022年   72篇
  2021年   157篇
  2020年   78篇
  2019年   92篇
  2018年   110篇
  2017年   116篇
  2016年   161篇
  2015年   284篇
  2014年   330篇
  2013年   321篇
  2012年   428篇
  2011年   392篇
  2010年   246篇
  2009年   207篇
  2008年   312篇
  2007年   260篇
  2006年   268篇
  2005年   242篇
  2004年   236篇
  2003年   181篇
  2002年   206篇
  2001年   43篇
  2000年   18篇
  1999年   28篇
  1998年   25篇
  1997年   23篇
  1996年   26篇
  1995年   14篇
  1994年   15篇
  1993年   19篇
  1992年   7篇
  1991年   12篇
  1990年   9篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1967年   1篇
  1965年   2篇
  1964年   1篇
  1963年   2篇
  1954年   1篇
排序方式: 共有5018条查询结果,搜索用时 15 毫秒
31.
Mutations in genes essential for protein homeostasis have been identified in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) patients. Why mature neurons should be particularly sensitive to such perturbations is unclear. We identified mutations in Rab8 in a genetic screen for enhancement of an FTD phenotype associated with ESCRT-III dysfunction. Examination of Rab8 mutants or motor neurons expressing a mutant ESCRT-III subunit, CHMP2BIntron5, at the Drosophila melanogaster neuromuscular junction synapse revealed synaptic overgrowth and endosomal dysfunction. Expression of Rab8 rescued overgrowth phenotypes generated by CHMP2BIntron5. In Rab8 mutant synapses, c-Jun N-terminal kinase (JNK)/activator protein-1 and TGF-β signaling were overactivated and acted synergistically to potentiate synaptic growth. We identify novel roles for endosomal JNK-scaffold POSH (Plenty-of-SH3s) and a JNK kinase kinase, TAK1, in regulating growth activation in Rab8 mutants. Our data uncover Rab8, POSH, and TAK1 as regulators of synaptic growth responses and point to recycling endosome as a key compartment for synaptic growth regulation during neurodegenerative processes.  相似文献   
32.
Combined methylmalonic aciduria with homocystinuria (cblC type) is a rare disease caused by mutations in the MMACHC gene. MMACHC encodes an enzyme crucial for intracellular vitamin B12 metabolism, leading to the accumulation of toxic metabolites e.g. methylmalonic acid (MMA) and homocysteine (Hcy), and secondary disturbances in folate and one-carbon metabolism when not fully functional. Patients with cblC deficiency often present in the neonatal or early childhood period with a severe multisystem pathology, which comprises a broad spectrum of treatment-resistant ophthalmological phenotypes, including retinal degeneration, impaired vision, and vascular changes. To examine the potential function of MMACHC in the retina and how its loss may impact disease, we performed gene expression studies in human and mouse, which showed that local expression of MMACHC in the retina and retinal pigment epithelium is relatively stable over time. To study whether functional MMACHC is required for retinal function and tissue integrity, we generated a transgenic mouse lacking Mmachc expression in cells of the peripheral retina. Characterization of this mouse revealed accumulation of cblC disease related metabolites, including MMA and the folate-dependent purine synthesis intermediates AICA-riboside and SAICA-riboside in the retina. Nevertheless, fundus appearance, morphology, vasculature, and cellular composition of the retina, as well as ocular function, remained normal in mice up to 6 or 12 months of age. Our data indicates that peripheral retinal neurons do not require intrinsic expression of Mmachc for survival and function and questions whether a local MMACHC deficiency is responsible for the retinal phenotypes in patients.  相似文献   
33.

Background

There is widespread concern about the possible health effects of traffic-related air pollution. Nitrogen dioxide (NO2) is a convenient marker of primary pollution. We investigated the associations between lung function and current residential exposure to a range of air pollutants (particularly NO2, NO, NOx and particulate matter) in London children. Moreover, we placed the results for NO2 in context with a meta-analysis of published estimates of the association.

Methods and Findings

Associations between primary traffic pollutants and lung function were investigated in 4884 children aged 9–10 years who participated in the Child Heart and Health Study in England (CHASE). A systematic literature search identified 13 studies eligible for inclusion in a meta-analysis. We combined results from the meta-analysis with the distribution of the values of FEV1 in CHASE to estimate the prevalence of children with abnormal lung function (FEV1<80% of predicted value) expected under different scenarios of NO2 exposure. In CHASE, there were non-significant inverse associations between all pollutants except ozone and both FEV1 and FVC. In the meta-analysis, a 10 μg/m3 increase in NO2 was associated with an 8 ml lower FEV1 (95% CI: -14 to -1 ml; p: 0.016). The observed effect was not modified by a reported asthma diagnosis. On the basis of these results, a 10 μg/m3 increase in NO2 level would translate into a 7% (95% CI: 4% to 12%) increase of the prevalence of children with abnormal lung function.

Conclusions

Exposure to traffic pollution may cause a small overall reduction in lung function and increase the prevalence of children with clinically relevant declines in lung function.  相似文献   
34.
Identification of a pathogen is a critical first step in the epidemiology and subsequent management of a disease. A limited number of pathogens have been identified for diseases contributing to the global decline of coral populations. Here we describe Vibrio coralliilyticus strain OCN008, which induces acute Montipora white syndrome (aMWS), a tissue loss disease responsible for substantial mortality of the coral Montipora capitata in Kāne‘ohe Bay, Hawai‘i. OCN008 was grown in pure culture, recreated signs of disease in experimentally infected corals, and could be recovered after infection. In addition, strains similar to OCN008 were isolated from diseased coral from the field but not from healthy M. capitata. OCN008 repeatedly induced the loss of healthy M. capitata tissue from fragments under laboratory conditions with a minimum infectious dose of between 107 and 108 CFU/ml of water. In contrast, Porites compressa was not infected by OCN008, indicating the host specificity of the pathogen. A decrease in water temperature from 27 to 23°C affected the time to disease onset, but the risk of infection was not significantly reduced. Temperature-dependent bleaching, which has been observed with the V. coralliilyticus type strain BAA-450, was not observed during infection with OCN008. A comparison of the OCN008 genome to the genomes of pathogenic V. coralliilyticus strains BAA-450 and P1 revealed similar virulence-associated genes and quorum-sensing systems. Despite this genetic similarity, infections of M. capitata by OCN008 do not follow the paradigm for V. coralliilyticus infections established by the type strain.  相似文献   
35.
Synaptojanin is a lipid phosphatase required to degrade phosphatidylinositol 4,5 bisphosphate (PIP(2)) at cell membranes during synaptic vesicle recycling. Synaptojanin mutants in C. elegans are severely uncoordinated and are depleted of synaptic vesicles, possibly because of accumulation of PIP(2). To identify proteins that act downstream of PIP(2) during endocytosis, we screened for suppressors of synaptojanin mutants in the nematode C. elegans. A class of uncoordinated mutants called "fainters" partially suppress the locomotory, vesicle depletion, and electrophysiological defects in synaptojanin mutants. These suppressor loci include the genes for the NCA ion channels, which are homologs of the vertebrate cation leak channel NALCN, and a novel gene called unc-80. We demonstrate that unc-80 encodes a novel, but highly conserved, neuronal protein required for the proper localization of the NCA-1 and NCA-2 ion channel subunits. These data suggest that activation of the NCA ion channel in synaptojanin mutants leads to defects in recycling of synaptic vesicles.  相似文献   
36.
Neurons of the organum vasculosum of the lamina terminalis (OVLT) are necessary for thirst and vasopressin secretion during hypersmolality in rodents. Recent evidence suggests the osmosensitivity of these neurons is mediated by a gene product encoding the transient receptor potential vanilloid-1 (TRPV1) channel. The purpose of the present study was to determine whether mice lacking the TRPV1 channel had blunted thirst responses and central Fos activation to acute and chronic hyperosmotic stimuli. Surprisingly, TRPV1-/- vs. wild-type mice ingested similar amounts of water after injection (0.5 ml sc) of 0.5 M NaCl and 1.0 M NaCl. Chronic increases in plasma osmolality produced by overnight water deprivation or sole access to a 2% NaCl solution for 48 h produced similar increases in water intake between wild-type and TRPV1-/- mice. There were no differences in cumulative water intakes in response to hypovolemia or isoproterenol. In addition, the number of Fos-positive cells along the lamina terminalis, including the OVLT, as well as the supraoptic nucleus and hypothalamic paraventricular nucleus, was similar between wild-type and TRPV1-/- mice after both acute and chronic osmotic stimulation. These findings indicate that TRPV1 channels are not necessary for osmotically driven thirst or central Fos activation, and thereby suggest that TRPV1 channels are not the primary ion channels that permit the brain to detect changes in plasma sodium concentration or osmolality.  相似文献   
37.
Since the initial sequencing of the human genome, many projects are underway to understand the effects of genetic variation between individuals. Predicting and understanding the downstream effects of genetic variation using computational methods are becoming increasingly important for single nucleotide polymorphism (SNP) selection in genetics studies and understanding the molecular basis of disease. According to the NIH, there are now more than four million validated SNPs in the human genome. The volume of known genetic variations lends itself well to an informatics approach. Bioinformaticians have become very good at functional inference methods derived from functional and structural genomics. This review will present a broad overview of the tools and resources available to collect and understand functional variation from the perspective of structure, expression, evolution and phenotype. Additionally, public resources available for SNP identification and characterisation are summarised.  相似文献   
38.
The GTPase Arl3p is required to recruit a second GTPase, Arl1p, to the Golgi in Saccharomyces cerevisiae. Arl1p binds to the GRIP domain, which is present in a number of long coiled-coil proteins or 'golgins'. Here we show that Arl3p is not myristoylated like most members of the Arf family, but is instead amino-terminally acetylated by the NatC complex. Targeting of Arl3p also requires a Golgi membrane protein Sys1p. The human homologues of Arl3p (Arf-related protein 1 (ARFRP1)) and Sys1p (hSys1) can be isolated in a complex after chemical cross-linking. This suggests that the targeting of ARFRP1/Arl3p to the Golgi is mediated by a direct interaction between its acetylated N terminus and Sys1p/hSys1.  相似文献   
39.
Human purine nucleoside phosphorylase (PNP) is a homotrimer, containing three nonconserved tryptophan residues at positions 16, 94, and 178, all remote from the catalytic site. The Trp residues were replaced with Tyr to produce Trp-free PNP (Leuko-PNP). Leuko-PNP showed near-normal kinetic properties. It was used (1) to determine the tautomeric form of guanine that produces strong fluorescence when bound to PNP, (2) for thermodynamic binding analysis of binary and ternary complexes with substrates, (3) in temperature-jump perturbation of complexes for evidence of multiple conformational complexes, and (4) to establish the ionization state of a catalytic site tyrosine involved in phosphate nucleophile activation. The (13)C NMR spectrum of guanine bound to Leuko-PNP, its fluorescent properties, and molecular orbital electronic transition analysis establish that its fluorescence originates from the lowest singlet excited state of the N1H, 6-keto, N7H guanine tautomer. Binding of guanine and phosphate to PNP and Leuko-PNP are random, with decreased affinity for formation of ternary complexes. Pre-steady-state kinetics and temperature-jump studies indicate that the ternary complex (enzyme-substrate-phosphate) forms in single binding steps without kinetically significant protein conformational changes as monitored by guanine fluorescence. Spectral changes of Leuko-PNP upon phosphate binding establish that the hydroxyl of Tyr88 is not ionized to the phenolate anion when phosphate is bound. A loop region (residues 243-266) near the purine base becomes highly ordered upon substrate/inhibitor binding. A single Trp residue was introduced into the catalytic loop of Leuko-PNP (Y249W-Leuko-PNP) to determine effects on catalysis and to introduce a fluorescence catalytic site probe. Although Y249W-Leuko-PNP is highly fluorescent and catalytically active, substrate binding did not perturb the fluorescence. Thermodynamic boxes, constructed to characterize the binding of phosphate, guanine, and hypoxanthine to native, Leuko-, and Y249W-Leuko-PNPs, establish that Leuko-PNP provides a versatile protein scaffold for introduction of specific Trp catalytic site probes.  相似文献   
40.
The novel adipocytokine visfatin exerts direct cardioprotective effects   总被引:3,自引:0,他引:3  
Visfatin is an adipocytokine capable of mimicking the glucose-lowering effects of insulin and activating the pro-survival kinases phosphatidylinositol-3-OH kinase (PI3K)-protein kinase B (Akt) and mitogen-activated protein kinase kinase 1 and 2 (MEK1/2)-extracellular signal-regulated kinase 1 and 2 (Erk 1/2). Experimental studies have demonstrated that the activation of these kinases confers cardioprotection through the inhibition of the mitochondrial permeability transition pore (mPTP). Whether visfatin is capable of exerting direct cardioprotective effects through these mechanisms is unknown and is the subject of the current study. Anaesthetized C57BL/6 male mice were subjected to in situ 30 min. of regional myocardial ischaemia and 120 min. of reperfusion. The administration of an intravenous bolus of visfatin (5 x 10(-6) micromol) at the time of myocardial reperfusion reduced the myocardial infarct size from 46.1+/-4.1% in control hearts to 27.3+/-4.0% (n>or= 6/group, P<0.05), an effect that was blocked by the PI3K inhibitor, wortmannin, and the MEK1/2 inhibitor, U0126 (48.8+/-5.5% and 45.9+/-8.4%, respectively, versus 27.3+/-4.0% with visfatin; n>or= 6/group, P<0.05). In murine ventricular cardiomyocytes subjected to 30 min. of hypoxia followed by 30 min. of reoxygenation, visfatin (100 ng/ml), administered at the time of reoxygenation, reduced the cell death from 65.2+/-4.6% in control to 49.2+/-3.7%(n>200 cells/group, P<0.05), an effect that was abrogated by wortmannin and U0126 (68.1+/-5.2% and 59.7+/-6.2%, respectively; n>200 cells/group, P>0.05). Finally, the treatment of murine ventricular cardiomyocytes with visfatin (100 ng/ml) delayed the opening of the mPTP induced by oxidative stress from 81.2+/-4 sec. in control to 120+/-7 sec. (n>20 cells/group, P<0.05) in a PI3K- and MEK1/2-dependent manner. We report that the adipocytokine, visfatin, is capable of reducing myocardial injury when administered at the time of myocardial reperfusion in both the in situ murine heart and the isolated murine cardiomyocytes. The mechanism appears to involve the PI3K and MEK1/2 pathways and the mPTP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号