首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4563篇
  免费   455篇
  5018篇
  2024年   3篇
  2023年   32篇
  2022年   72篇
  2021年   157篇
  2020年   78篇
  2019年   92篇
  2018年   110篇
  2017年   116篇
  2016年   161篇
  2015年   284篇
  2014年   330篇
  2013年   321篇
  2012年   428篇
  2011年   392篇
  2010年   246篇
  2009年   207篇
  2008年   312篇
  2007年   260篇
  2006年   268篇
  2005年   242篇
  2004年   236篇
  2003年   181篇
  2002年   206篇
  2001年   43篇
  2000年   18篇
  1999年   28篇
  1998年   25篇
  1997年   23篇
  1996年   26篇
  1995年   14篇
  1994年   15篇
  1993年   19篇
  1992年   7篇
  1991年   12篇
  1990年   9篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   3篇
  1985年   6篇
  1983年   3篇
  1982年   3篇
  1981年   3篇
  1980年   2篇
  1979年   2篇
  1967年   1篇
  1965年   2篇
  1964年   1篇
  1963年   2篇
  1954年   1篇
排序方式: 共有5018条查询结果,搜索用时 15 毫秒
21.
Analysis of membrane currents recorded from hormone-deprived H441 cells showed that the membrane potential (V(m)) in single cells (approximately -80 mV) was unaffected by lowering [Na+]o or [Cl(-)]o, indicating that cellular Na+ and Cl(-) conductances (GNa and GCl, respectively) are negligible. Although insulin (20 nM, approximately 24 h) and dexamethasone (0.2 microM, approximately 24 h) both depolarized Vm by approximately 20 mV, the response to insulin reflected a rise in GCl mediated via phosphatidylinositol 3-kinase (PI3K) whereas dexamethasone acted by inducing a serum- and glucocorticoid-regulated kinase 1 (SGK1)-dependent rise in GNa. Although insulin stimulation/PI3K-P110 alpha expression did not directly increase GNa, these maneuvers augmented the dexamethasone-induced conductance. The glucocorticoid/SGK1-induced GNa in single cells discriminated poorly between Na+ and K+ (PNa/PK approximately 0.6), was insensitive to amiloride (1 mM), but was partially blocked by LaCl3 (La3+; 1 mM, approximately 80%), pimozide (0.1 mM, approximately 40%), and dichlorobenzamil (15 microM, approximately 15%). Cells growing as small groups, on the other hand, expressed an amiloride-sensitive (10 microM), selective GNa that displayed the same pattern of hormonal regulation as the nonselective conductance in single cells. These data therefore 1) confirm that H441 cells can express selective or nonselective GNa (14, 48), 2) show that these conductances are both induced by glucocorticoids/SGK1 and subject to PI3K-dependent regulation, and 3) establish that cell-cell contact is vitally important to the development of Na+ selectivity and amiloride sensitivity.  相似文献   
22.
The Distributed Annotation System   总被引:1,自引:0,他引:1  

Background  

Currently, most genome annotation is curated by centralized groups with limited resources. Efforts to share annotations transparently among multiple groups have not yet been satisfactory.  相似文献   
23.
In the analysis of human movement, researchers often sum individual joint kinetics to obtain a single measure of lower extremity function. The extent to which these summed measures relate to the mechanical objectives of the task has not been formally validated. The criterion validity of these measures was established with comparisons to the mechanical objective of two multiple-joint tasks. For the Work task 18 participants performed a loaded barbell squat using 4 resistances while instrumented for biomechanical analysis. For the Power they performed 2 predetermined amounts of work at both self-selected and fast speeds. Using inverse dynamics techniques, the peak net joint moment (PM) was calculated bilaterally in the sagittal plane at the ankle, knee, and hip and was summed into a single measure. This measure was correlated with the task objectives using simple linear regression. Similar procedures were used for the average net joint moment (AM), peak (PP), and average (AP) net joint moment power, and the net joint moment impulse (IM) and work (IP). For the Work task all 6 measures were significantly correlated with the task objective, but only AM, PM, and IP had correlation coefficients above 0.90. For the Power task, IM was not significantly correlated with the task objective, and only AP had a correlation coefficient above 0.90. These findings indicate that the validity of summing individual kinetic measures depends on both the measure chosen and the mechanical objective of the task.  相似文献   
24.
Clostridium difficile is an etiological agent of pseudomembranous colitis and antibiotic-associated diarrhea. Adhesion is the crucial first step in bacterial infection. Thus, in addition to toxins, the importance of colonization factors in C. difficile-associated disease is recognized. In this study, we identified Fbp68, one of the colonization factors that bind to fibronectin (Fn), as a manganese-binding protein (K(D) = 52.70 ± 1.97 nM). Furthermore, the conformation of Fbp68 changed dramatically upon manganese binding. Manganese binding can also stabilize the structure of Fbp68 as evidenced by the increased T(m) measured by thermodenatured circular dichroism and differential scanning calorimetry (CD, T(m) = 58-65 °C; differential scanning calorimetry, T(m) = 59-66 °C). In addition, enhanced tolerance to protease K also suggests greatly improved stability of Fbp68 through manganese binding. Fn binding activity was found to be dependent on manganese due to the lack of binding by manganese-free Fbp68 to Fn. The C-terminal 194 amino acid residues of Fbp68 (Fbp68C) were discovered to bind to the N-terminal domain of Fn (Fbp68C-NTD, K(D) = 233 ± 10 nM, obtained from isothermal titration calorimetry). Moreover, adhesion of C. difficile to Caco-2 cells can be partially blocked if cells are pretreated with Fbp68C, and the binding of Fbp68C on Fn siRNA-transfected cells was significantly reduced. These results raise the possibility that Fbp68 plays a key role in C. difficile adherence on host cells to initiate infection.  相似文献   
25.
Saccharomyces cerevisiae has recently been engineered to use acetate, a primary inhibitor in lignocellulosic hydrolysates, as a cosubstrate during anaerobic ethanolic fermentation. However, the original metabolic pathway devised to convert acetate to ethanol uses NADH-specific acetylating acetaldehyde dehydrogenase and alcohol dehydrogenase and quickly becomes constrained by limited NADH availability, even when glycerol formation is abolished. We present alcohol dehydrogenase as a novel target for anaerobic redox engineering of S. cerevisiae. Introduction of an NADPH-specific alcohol dehydrogenase (NADPH-ADH) not only reduces the NADH demand of the acetate-to-ethanol pathway but also allows the cell to effectively exchange NADPH for NADH during sugar fermentation. Unlike NADH, NADPH can be freely generated under anoxic conditions, via the oxidative pentose phosphate pathway. We show that an industrial bioethanol strain engineered with the original pathway (expressing acetylating acetaldehyde dehydrogenase from Bifidobacterium adolescentis and with deletions of glycerol-3-phosphate dehydrogenase genes GPD1 and GPD2) consumed 1.9 g liter−1 acetate during fermentation of 114 g liter−1 glucose. Combined with a decrease in glycerol production from 4.0 to 0.1 g liter−1, this increased the ethanol yield by 4% over that for the wild type. We provide evidence that acetate consumption in this strain is indeed limited by NADH availability. By introducing an NADPH-ADH from Entamoeba histolytica and with overexpression of ACS2 and ZWF1, we increased acetate consumption to 5.3 g liter−1 and raised the ethanol yield to 7% above the wild-type level.  相似文献   
26.
Several zebrafish P2X receptors (zP2X(1), zP2X(2), and zP2X(5.1)) have been reported to produce little or no current although their mammalian orthologs produce functional homomeric receptors. We isolated new cDNA clones for these P2X receptors that revealed sequence variations in each. The new variants of zP2X(1) and zP2X(5.1) produced substantial currents when expressed by Xenopus oocytes, however the new variant of zP2X(2) was still nonfunctional. zP2X(2) lacks two lysine residues essential for ATP responsiveness in other P2X receptors; however introduction of these two lysines was insufficient to allow this receptor to function as a homotrimer. We also tested whether P2X signaling is required for myogenesis or synaptic communication at the zebrafish neuromuscular junction. We found that embryonic skeletal muscle expressed only one P2X receptor, P2X(5.1). Antisense knockdown of P2X(5.1) eliminated skeletal muscle responsiveness to ATP but did not prevent myogenesis or behaviors that require functional transmission at the neuromuscular junction.  相似文献   
27.
The phototropins constitute an important class of plant photoreceptor kinases that control a range of physiological responses, including phototropism, light-directed chloroplast movement, and light-induced stomatal opening. The LOV2 domain of phototropin binds a molecule of flavin mononucleotide (FMN) and undergoes a photocycle involving light-driven covalent adduct formation between a conserved cysteine residue and the C(4a) atom of FMN. This product state promotes C-terminal kinase activation and downstream signal transduction. Here, we report the primary photophysics and photochemistry of LOV2 domains of phototropin 1 of Avena sativa (oat) and of the phy3 photoreceptor of Adiantum capillus-veneris (maidenhair fern). In agreement with earlier reports [Swartz, T. E., et al. (2001) J. Biol. Chem. 276, 36493-36500], we find that the FMN triplet state is the reactive species from which the photoreaction occurs. We demonstrate that the triplet state is the primary photoproduct in the LOV2 photocycle, generated at 60% efficiency. No spectroscopically distinguishable intermediates precede the FMN triplet on the femtosecond to nanosecond time scale, indicating that it is formed directly via intersystem crossing (ISC) from the singlet state. Our results indicate that the majority of the FMN triplets in the LOV2 domain exist in the protonated form. We propose a reaction mechanism that involves excited-state proton transfer, on the nanosecond time scale or faster, from the sulfhydryl group of the conserved cysteine to the N5 atom of FMN. This event promotes adduct formation by increasing the electrophilicity of C(4a) and subsequent nucleophilic attack by the cysteine's thiolate anion. Comparison to free FMN in solution shows that the protein environment of LOV2 increases the ISC rate of FMN by a factor of 2.4, thus improving the yield of the cysteinyl-flavin adduct and the efficiency of phototropin-mediated signaling processes.  相似文献   
28.
Type 2 diabetes is characterized by impaired glucose homeostasis due to defects in insulin secretion, insulin resistance and the incretin response. GPR40 (FFAR1 or FFA1) is a G-protein-coupled receptor (GPCR), primarily expressed in insulin-producing pancreatic β-cells and incretin-producing enteroendocrine cells of the small intestine. Several GPR40 agonists, including AMG 837 and TAK-875, have been disclosed, but no GPR40 synthetic agonists have been reported that engage both the insulinogenic and incretinogenic axes. In this report we provide a molecular explanation and describe the discovery of a unique and potent class of GPR40 full agonists that engages the enteroinsular axis to promote dramatic improvement in glucose control in rodents. GPR40 full agonists AM-1638 and AM-6226 stimulate GLP-1 and GIP secretion from intestinal enteroendocrine cells and increase GSIS from pancreatic islets, leading to enhanced glucose control in the high fat fed, streptozotocin treated and NONcNZO10/LtJ mouse models of type 2 diabetes. The improvement in hyperglycemia by AM-1638 was reduced in the presence of the GLP-1 receptor antagonist Ex(9–39)NH2.  相似文献   
29.
During tissue elongation from stage 9 to stage 10 in Drosophila oogenesis, the egg chamber increases in length by ∼1.7-fold while increasing in volume by eightfold. During these stages, spontaneous oscillations in the contraction of cell basal surfaces develop in a subset of follicle cells. This patterned activity is required for elongation of the egg chamber; however, the mechanisms generating the spatiotemporal pattern have been unclear. Here we use a combination of quantitative modeling and experimental perturbation to show that mechanochemical interactions are sufficient to generate oscillations of myosin contractile activity in the observed spatiotemporal pattern. We propose that follicle cells in the epithelial layer contract against pressure in the expanding egg chamber. As tension in the epithelial layer increases, Rho kinase signaling activates myosin assembly and contraction. The activation process is cooperative, leading to a limit cycle in the myosin dynamics. Our model produces asynchronous oscillations in follicle cell area and myosin content, consistent with experimental observations. In addition, we test the prediction that removal of the basal lamina will increase the average oscillation period. The model demonstrates that in principle, mechanochemical interactions are sufficient to drive patterning and morphogenesis, independent of patterned gene expression.  相似文献   
30.
Computation has become a critical component of research in biology. A risk has emerged that computational and programming challenges may limit research scope, depth, and quality. We review various solutions to common computational efficiency problems in ecological and evolutionary research. Our review pulls together material that is currently scattered across many sources and emphasizes those techniques that are especially effective for typical ecological and environmental problems. We demonstrate how straightforward it can be to write efficient code and implement techniques such as profiling or parallel computing. We supply a newly developed R package (aprof) that helps to identify computational bottlenecks in R code and determine whether optimization can be effective. Our review is complemented by a practical set of examples and detailed Supporting Information material (S1S3 Texts) that demonstrate large improvements in computational speed (ranging from 10.5 times to 14,000 times faster). By improving computational efficiency, biologists can feasibly solve more complex tasks, ask more ambitious questions, and include more sophisticated analyses in their research.
This is part of the PLOS Computational Biology Education collection.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号