首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25390篇
  免费   2145篇
  国内免费   1700篇
  2024年   32篇
  2023年   291篇
  2022年   716篇
  2021年   1300篇
  2020年   840篇
  2019年   1067篇
  2018年   1021篇
  2017年   729篇
  2016年   1072篇
  2015年   1621篇
  2014年   1847篇
  2013年   1897篇
  2012年   2360篇
  2011年   2081篇
  2010年   1239篇
  2009年   1127篇
  2008年   1396篇
  2007年   1163篇
  2006年   1095篇
  2005年   889篇
  2004年   743篇
  2003年   628篇
  2002年   575篇
  2001年   366篇
  2000年   339篇
  1999年   352篇
  1998年   233篇
  1997年   265篇
  1996年   217篇
  1995年   203篇
  1994年   177篇
  1993年   148篇
  1992年   188篇
  1991年   155篇
  1990年   155篇
  1989年   104篇
  1988年   93篇
  1987年   91篇
  1986年   66篇
  1985年   71篇
  1984年   44篇
  1983年   50篇
  1982年   24篇
  1981年   19篇
  1980年   16篇
  1979年   14篇
  1978年   10篇
  1976年   9篇
  1969年   9篇
  1965年   18篇
排序方式: 共有10000条查询结果,搜索用时 500 毫秒
991.

Due to their large-scale manufacture and widespread application, there have been a number of studies related to toxicological assessment of nanomaterials (NMs) over the past decade. Although there has been extensive research on the cytotoxicity of NMs, concerns have been raised about their possible genotoxicity. The genome is constantly exposed to genotoxic insults that can lead to DNA damage, which in turn can have consequences for health, such as the induction of carcinogenesis. This comprehensive review focuses on the direct and indirect interactions of NMs with DNA. Factors influencing the genotoxicity of NMs, such as their physicochemical characteristics, are also discussed. The mechanisms involved in the direct and indirect interactions of NMs with DNA are also reviewed. Many studies have shown that ENMs have genotoxic effects, such as chromosomal fragmentation, DNA strand breaks, point mutations, oxidative DNA adducts, apoptosis, hypoxic responses, mitochondrial dysfunction, and epigenetic modifications. As the data reported to date are inconsistent, it is difficult to draw definitive conclusions regarding the features of NMs that promote genotoxicity. Therefore, challenges and future research perspectives are discussed. This review provides insights into the genotoxic effects of NMs and their consequences for human health.

  相似文献   
992.
Novel photovoltaic perovskite solar cells (PSCs) with high‐efficient photovoltaic property are largely in thrall to the uncertain perovskite grain size and inevitable defects. Here, inspired by the competitive growth between tree and grass in the forest system, a competitive perovskite grain growth approach via micro‐contact print (MicroCP) method (CD disk as templates) for printing wettability‐patterned substrate is proposed, aiming to achieve large‐grained perovskite and avoid discontinuous perovskite films caused by the low wettability of substrates. A MicroCP process is employed to construct a patterned wettability surface for the perovskite competitive growth mechanism on the electrode surface. This approach modifies the substrates quickly, ensures the uniform coverage of perovskite due to the function of ‐NH2 and Pb2+ bonds, and converts the perovskite films composed of small grains and pinholes into high‐quality perovskite films, free from pinholes and made up of large grains, resulting in efficiencies over 20% for the MicroCP PSCs.  相似文献   
993.
994.
Fabrication of efficient Pb reduced inorganic CsPbI2Br perovskite solar cells (PSC) are an important part of environment‐friendly perovskite technology. In this work, 10% Pb reduction in CsPb0.9Zn0.1I2Br promotes the efficiency of PSCs to 13.6% (AM1.5, 1sun), much higher than the 11.8% of the pure CsPbI2Br solar cell. Zn2+ has stronger interaction with the anions to manipulate crystal growth, resulting in size‐enlarged crystallite with enhanced growth orientation. Moreover, the grain boundaries (GBs) are passivated by the Cs‐Zn‐I/Br compound. The high quality CsPb0.9Zn0.1I2Br greatly diminishes the GB trap states and facilitates the charge transport. Furthermore, the Zn4s‐I5p states slightly reduce the energy bandgap, accounting for the wider solar spectrum absorption. Both the crystalline morphology and energy state change benefit the device performance. This work highlights a nontoxic and stable Pb reduction method to achieve efficient inorganic PSCs.  相似文献   
995.
Zhou  Hai-Yan  Li  Yi-Zuo  Jiang  Rui  Hu  Hai-Feng  Wang  Yuan-Shan  Liu  Zhi-Qiang  Xue  Ya-Ping  Zheng  Yu-Guo 《Bioprocess and biosystems engineering》2019,42(10):1573-1582
Bioprocess and Biosystems Engineering - R-2-(4-hydroxyphenoxy)propionic acid (R-HPPA) is a key intermediate of the enantiomerically pure phenoxypropionic acid herbicides. R-HPPA could be...  相似文献   
996.
Solar desalination is a promising and sustainable solution for water shortages in the future. Interfacial solar‐to‐heat conversion for desalination has attracted increasing attention in the past decades, due to the heat localization induced high thermal efficiency, simple structure, and low cost. In this review, the authors summarize and analyze the critical processes involved in such a solar desalination system, including the thermal conversion and transport, salt dissipation, and vapor manipulation. Mathematical models of heat transfer and salt dissipation are also built for quantitative analysis of systematic performance relative to properties of employed materials and system designs. Recent efforts devoted to improving the overall thermal efficiency, salt rejection, and water yield are then summarized. Based on the analysis and previous results, opportunities for further interfacial solar desalination development are highlighted.  相似文献   
997.
Reproduction, as a physiologically complex process, can significantly affect the development of the sheep industry. However, a lack of overall understanding to sheep fecundity has long blocked the progress in sheep breeding and husbandry. In the present study, the aim is to identify differentially expressed proteins (DEPs) from hypothalamus in sheep without FecB mutation in two comparison groups: polytocous (PF) versus monotocous (MF) sheep at follicular phase and polytocous (PL) versus monotocous (ML) sheep at luteal phase. Totally 5058 proteins are identified in sheep hypothalamus, where 22 in PF versus MF, and 39 proteins in PL versus ML are differentially expressed, respectively. A functional analysis is then conducted including Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis to reveal the potential roles of these DEPs. The proteins ENSOARP00000020097, ENSOARP00000006714, growth hormone (GH), histone deacetylase 4 (HDAC4), and 5′‐3′ exoribonuclease 2 (XRN2) in PF versus MF, and bcl‐2‐associated athanogene 4 (BAG4), insulin‐like growth factor‐1 receptor (IGF1R), hydroxysteroid 11‐beta dehydrogenase 1 (HSD11B1), and transthyretin (TTR) in PL versus ML appear to modulate reproduction, presumably by influencing the activities of gonadotropin‐releasing hormone (GnRH). This study provides an alternative method to identify DEPs associated with sheep prolificacy from the hypothalamus. The mass spectrometry data are available via ProteomeXchange with identifier PXD013822.  相似文献   
998.
Potassium‐ion batteries (PIBs) are an emerging, affordable, and environmentally friendly alternative to lithium‐ion batteries, with their further development driven by the need for suitably performing electrode materials capable of reversibly accommodating the relatively large K+. Layer‐structured manganese oxides are attractive as electrodes for PIBs, but suffer from structural instability and sluggish kinetics of K+ insertion/extraction, leading to poor rate capability. Herein, cobalt is successfully introduced at the manganese site in the KxMnO2 layered oxide electrode material and it is shown that with only 5% Co, the reversible capacity increases by 30% at 22 mA g‐1 and by 92% at 440 mA g‐1. In operando synchrotron X‐ray diffraction reveals that Co suppresses Jahn–Teller distortion, leading to more isotropic migration pathways for K+ in the interlayer, thus enhancing the ionic diffusion and consequently, rate capability. The detailed analysis reveals that additional phase transitions and larger volume change occur in the Co‐doped material as a result of layer gliding, with these associated with faster capacity decay, despite the overall capacity remaining higher than the pristine material, even after 500 cycles. These results assert the importance of understanding the detailed structural evolution that underpins performance that will inform the strategic design of electrode materials for high‐performance PIBs.  相似文献   
999.
In this study, 2‐hydroxyethyl methacrylate (HEMA) was used as the monomers for surface grafting on electrospun PU/RC nanofiber membrane via atom transfer radical polymerization (ATRP) method, and the PU/RC‐poly(HEMA) nanofiber membrane was investigated as a carrier for LAC. Free and immobilized LAC was characterized, and efficiency of bisphenol A (BPA) removal was determined. The results indicated that the PU/RC‐poly(HEMA)‐LAC showed relatively higher pH stability, temperature stability, and storage stability than free and PU/RC‐LAC; moreover, more than 60% of the PU/RC‐poly(HEMA)‐LAC activity was retained after 10 cycles of ABTS treatment. Notably, the BPA removal efficiency of PU/RC‐poly(HEMA)‐LAC membrane generally ranged from 87.3 to 75.4% for the five cycles. Therefore, the PU/RC‐poly(HEMA) nanofiber membrane has great potential as a carrier for the LAC immobilization for various industrial applications and bioremediation.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号