首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25543篇
  免费   2148篇
  国内免费   1701篇
  2024年   58篇
  2023年   347篇
  2022年   781篇
  2021年   1308篇
  2020年   842篇
  2019年   1067篇
  2018年   1021篇
  2017年   729篇
  2016年   1072篇
  2015年   1621篇
  2014年   1847篇
  2013年   1897篇
  2012年   2360篇
  2011年   2081篇
  2010年   1239篇
  2009年   1127篇
  2008年   1396篇
  2007年   1163篇
  2006年   1095篇
  2005年   889篇
  2004年   743篇
  2003年   628篇
  2002年   575篇
  2001年   366篇
  2000年   339篇
  1999年   352篇
  1998年   233篇
  1997年   265篇
  1996年   217篇
  1995年   203篇
  1994年   177篇
  1993年   148篇
  1992年   188篇
  1991年   155篇
  1990年   155篇
  1989年   104篇
  1988年   93篇
  1987年   91篇
  1986年   66篇
  1985年   71篇
  1984年   44篇
  1983年   50篇
  1982年   24篇
  1981年   19篇
  1980年   16篇
  1979年   14篇
  1978年   10篇
  1976年   9篇
  1969年   9篇
  1965年   18篇
排序方式: 共有10000条查询结果,搜索用时 22 毫秒
981.
Developing low‐cost, high‐capacity, high‐rate, and robust earth‐abundant electrode materials for energy storage is critical for the practical and scalable application of advanced battery technologies. Herein, the first example of synthesizing 1D peapod‐like bimetallic Fe2VO4 nanorods confined in N‐doped carbon porous nanowires with internal void space (Fe2VO4?NC nanopeapods) as a high‐capacity and stable anode material for potassium‐ion batteries (KIBs) is reported. The peapod‐like Fe2VO4?NC nanopeapod heterostructures with interior void space and external carbon shell efficiently prevent the aggregation of the active materials, facilitate fast transportation of electrons and ions, and accommodate volume variation during the cycling process, which substantially boosts the rate and cycling performance of Fe2VO4. The Fe2VO4?NC electrode exhibits high reversible specific depotassiation capacity of 380 mAh g?1 at 100 mA g?1 after 60 cycles and remarkable rate capability as well as long cycling stability with a high capacity of 196 mAh g?1 at 4 A g?1 after 2300 cycles. The first‐principles calculations reveal that Fe2VO4?NC nanopeapods have high ionic/electronic conductivity characteristics and low diffusion barriers for K+‐intercalation. This study opens up new way for investigating high‐capacity metal oxide as high‐rate and robust electrode materials for KIBs.  相似文献   
982.
The challenge in the artificial CO2 reduction to fuel is achieving high selective electrocatalysts. Here, a highly selective Cu2O/CuO heterostructure electrocatalyst is developed for CO2 electroreduction. The Cu2O/CuO nanowires modified by Ni nanoparticles exhibit superior catalytic performance with high faradic efficiency (95% for CO). Theoretical and experimental analyses show that the hybridization of Cu2O/CuO nanowires and Ni nanoparticles can not only adjust the d‐band center of electrocatalysts to enhance the intrinsic catalytic activity but also improve the adsorption of COOH* intermediates and suppress the hydrogen evolution reaction to promote the CO conversion efficiency during CO2 reduction reaction. An in situ Raman spectroscopic study further confirms the existence of COOH* species and the engineering intermediates adsorption. This work offers new insights for facile designing of nonprecious transition metal compound heterostructure for CO2 reduction reaction through adjusting the reaction pathway.  相似文献   
983.
Redox flow batteries have considerable advantages of system scalability and operation flexibility over other battery technologies, which makes them promising for large‐scale energy storage application. However, they suffer from low energy density and consequently relatively high cost for a nominal energy output. Redox targeting–based flow batteries are employed by incorporating solid energy storage materials in the tank and present energy density far beyond the solubility limit of the electrolytes. The success of this concept relies on paring suitable redox mediators with solid materials for facilitated reaction kinetics and lean electrolyte composition. Here, a redox targeting‐based flow battery system using the NASICON‐type Na3V2(PO4)3 as a capacity booster for both the catholyte and anolyte is reported. With 10‐methylphenothiazine as the cathodic redox mediator and 9‐fluorenone as anodic redox mediator, an all‐organic single molecule redox targeting–based flow battery is developed. The anodic and cathodic capacity are 3 and 17 times higher than the solubility limit of respective electrolyte, with which a full cell can achieve an energy density up to 88 Wh L?1. The reaction mechanism is scrutinized by operando and in‐situ X‐ray and UV–vis absorption spectroscopy. The reaction kinetics are analysed in terms of Butler–Volmer formalism.  相似文献   
984.

Microplastics have been widely considered as contaminants for the environment and biota. Till now, most previous studies have focused on the identification and characterization of microplastics in freshwater, sea water, and the terrestrial environment. Although microplastics have been extensively detected in the wastewater, research in this area is still lacking and not thoroughly understood. To fill this knowledge gap, the current review article covers the analytical methods of microplastics originating from wastewater streams and describes their sources and occurrences in wastewater treatment plants (WWTPs). Studies indicated that microplastic pollution caused by domestic washing of synthetic fibers could be detected in the effluent; however, most microplastics from personal care and cosmetic products (PCCPs) can be efficiently removed during wastewater treatment. Moreover, various techniques for sampling and analyzing microplastics from wastewater systems are reviewed; while, the implementation of standardized protocols for microplastics is required. Finally, the fate of microplastics during wastewater treatments and the environmental contamination of effluent to environment are presented. Previous studies reported that the advanced wastewater treatment (e.g., membrane bioreactor) is needed for improving the removal efficiency of small-sized microplastics (<?100 µm). Although the role of microplastics as transport vectors for persistent organic pollutants (POPs) is still under debate, they have demonstrated abilities to absorb harmful agents like pharmaceuticals.

  相似文献   
985.

Due to their large-scale manufacture and widespread application, there have been a number of studies related to toxicological assessment of nanomaterials (NMs) over the past decade. Although there has been extensive research on the cytotoxicity of NMs, concerns have been raised about their possible genotoxicity. The genome is constantly exposed to genotoxic insults that can lead to DNA damage, which in turn can have consequences for health, such as the induction of carcinogenesis. This comprehensive review focuses on the direct and indirect interactions of NMs with DNA. Factors influencing the genotoxicity of NMs, such as their physicochemical characteristics, are also discussed. The mechanisms involved in the direct and indirect interactions of NMs with DNA are also reviewed. Many studies have shown that ENMs have genotoxic effects, such as chromosomal fragmentation, DNA strand breaks, point mutations, oxidative DNA adducts, apoptosis, hypoxic responses, mitochondrial dysfunction, and epigenetic modifications. As the data reported to date are inconsistent, it is difficult to draw definitive conclusions regarding the features of NMs that promote genotoxicity. Therefore, challenges and future research perspectives are discussed. This review provides insights into the genotoxic effects of NMs and their consequences for human health.

  相似文献   
986.
Novel photovoltaic perovskite solar cells (PSCs) with high‐efficient photovoltaic property are largely in thrall to the uncertain perovskite grain size and inevitable defects. Here, inspired by the competitive growth between tree and grass in the forest system, a competitive perovskite grain growth approach via micro‐contact print (MicroCP) method (CD disk as templates) for printing wettability‐patterned substrate is proposed, aiming to achieve large‐grained perovskite and avoid discontinuous perovskite films caused by the low wettability of substrates. A MicroCP process is employed to construct a patterned wettability surface for the perovskite competitive growth mechanism on the electrode surface. This approach modifies the substrates quickly, ensures the uniform coverage of perovskite due to the function of ‐NH2 and Pb2+ bonds, and converts the perovskite films composed of small grains and pinholes into high‐quality perovskite films, free from pinholes and made up of large grains, resulting in efficiencies over 20% for the MicroCP PSCs.  相似文献   
987.
988.
Fabrication of efficient Pb reduced inorganic CsPbI2Br perovskite solar cells (PSC) are an important part of environment‐friendly perovskite technology. In this work, 10% Pb reduction in CsPb0.9Zn0.1I2Br promotes the efficiency of PSCs to 13.6% (AM1.5, 1sun), much higher than the 11.8% of the pure CsPbI2Br solar cell. Zn2+ has stronger interaction with the anions to manipulate crystal growth, resulting in size‐enlarged crystallite with enhanced growth orientation. Moreover, the grain boundaries (GBs) are passivated by the Cs‐Zn‐I/Br compound. The high quality CsPb0.9Zn0.1I2Br greatly diminishes the GB trap states and facilitates the charge transport. Furthermore, the Zn4s‐I5p states slightly reduce the energy bandgap, accounting for the wider solar spectrum absorption. Both the crystalline morphology and energy state change benefit the device performance. This work highlights a nontoxic and stable Pb reduction method to achieve efficient inorganic PSCs.  相似文献   
989.
Zhou  Hai-Yan  Li  Yi-Zuo  Jiang  Rui  Hu  Hai-Feng  Wang  Yuan-Shan  Liu  Zhi-Qiang  Xue  Ya-Ping  Zheng  Yu-Guo 《Bioprocess and biosystems engineering》2019,42(10):1573-1582
Bioprocess and Biosystems Engineering - R-2-(4-hydroxyphenoxy)propionic acid (R-HPPA) is a key intermediate of the enantiomerically pure phenoxypropionic acid herbicides. R-HPPA could be...  相似文献   
990.
Solar desalination is a promising and sustainable solution for water shortages in the future. Interfacial solar‐to‐heat conversion for desalination has attracted increasing attention in the past decades, due to the heat localization induced high thermal efficiency, simple structure, and low cost. In this review, the authors summarize and analyze the critical processes involved in such a solar desalination system, including the thermal conversion and transport, salt dissipation, and vapor manipulation. Mathematical models of heat transfer and salt dissipation are also built for quantitative analysis of systematic performance relative to properties of employed materials and system designs. Recent efforts devoted to improving the overall thermal efficiency, salt rejection, and water yield are then summarized. Based on the analysis and previous results, opportunities for further interfacial solar desalination development are highlighted.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号