首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111461篇
  免费   8516篇
  国内免费   6906篇
  126883篇
  2024年   216篇
  2023年   1459篇
  2022年   3249篇
  2021年   5495篇
  2020年   3588篇
  2019年   4393篇
  2018年   4385篇
  2017年   3256篇
  2016年   4640篇
  2015年   6750篇
  2014年   7916篇
  2013年   8382篇
  2012年   10032篇
  2011年   8939篇
  2010年   5479篇
  2009年   4779篇
  2008年   5647篇
  2007年   4960篇
  2006年   4395篇
  2005年   3356篇
  2004年   2977篇
  2003年   2552篇
  2002年   2223篇
  2001年   2008篇
  2000年   1872篇
  1999年   1845篇
  1998年   1022篇
  1997年   1139篇
  1996年   1022篇
  1995年   921篇
  1994年   943篇
  1993年   669篇
  1992年   997篇
  1991年   841篇
  1990年   619篇
  1989年   561篇
  1988年   487篇
  1987年   415篇
  1986年   391篇
  1985年   393篇
  1984年   212篇
  1983年   199篇
  1982年   137篇
  1981年   116篇
  1980年   107篇
  1979年   121篇
  1978年   78篇
  1975年   62篇
  1974年   80篇
  1972年   63篇
排序方式: 共有10000条查询结果,搜索用时 8 毫秒
81.
A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.  相似文献   
82.
Caspase-2 (casp-2) is the most conserved caspase across species, and is one of the initiator caspases activated by various stimuli. The casp-2 gene produces several alternative splicing isoforms. It is believed that the long isoform, casp-2L, promotes apoptosis, whereas the short isoform, casp-2S, inhibits apoptosis. The actual effect of casp-2S on apoptosis is still controversial, however, and the underlying mechanism for casp-2S-mediated apoptosis inhibition is unclear. Here, we analyzed the effects of casp-2S on DNA damage induced apoptosis through “gain-of-function” and “loss-of-function” strategies in ovarian cancer cell lines. We clearly demonstrated that the over-expression of casp-2S inhibited, and the knockdown of casp-2S promoted, the cisplatin-induced apoptosis of ovarian cancer cells. To explore the mechanism by which casp-2S mediates apoptosis inhibition, we analyzed the proteins which interact with casp-2S in cells by using immunoprecipitation (IP) and mass spectrometry. We have identified two cytoskeleton proteins, Fodrin and α-Actinin 4, which interact with FLAG-tagged casp-2S in HeLa cells and confirmed this interaction through reciprocal IP. We further demonstrated that casp-2S (i) is responsible for inhibiting DNA damage-induced cytoplasmic Fodrin cleavage independent of cellular p53 status, and (ii) prevents cisplatin-induced membrane blebbing. Taken together, our data suggests that casp-2S affects cellular apoptosis through its interaction with membrane-associated cytoskeletal Fodrin protein.  相似文献   
83.
We have used the slow myosin heavy chain (MyHC) 3 gene to study the molecular mechanisms that control atrial chamber-specific gene expression. Initially, slow MyHC 3 is uniformly expressed throughout the tubular heart of the quail embryo. As cardiac development proceeds, an anterior-posterior gradient of slow MyHC 3 expression develops, culminating in atrial chamber-restricted expression of this gene following chamberization. Two cis elements within the slow MyHC 3 gene promoter, a GATA-binding motif and a vitamin D receptor (VDR)-like binding motif, control chamber-specific expression. The GATA element of the slow MyHC 3 is sufficient for expression of a heterologous reporter gene in both atrial and ventricular cardiomyocytes, and expression of GATA-4, but not Nkx2-5 or myocyte enhancer factor 2C, activates reporter gene expression in fibroblasts. Equivalent levels of GATA-binding activity were found in extracts of atrial and ventricular cardiomyocytes from embryonic chamberized hearts. These observations suggest that GATA factors positively regulate slow MyHC 3 gene expression throughout the tubular heart and subsequently in the atria. In contrast, an inhibitory activity, operating through the VDR-like element, increased in ventricular cardiomyocytes during the transition of the heart from a tubular to a chambered structure. Overexpression of the VDR, acting via the VDR-like element, duplicates the inhibitory activity in ventricular but not in atrial cardiomyocytes. These data suggest that atrial chamber-specific expression of the slow MyHC 3 gene is achieved through the VDR-like inhibitory element in ventricular cardiomyocytes at the time distinct atrial and ventricular chambers form.  相似文献   
84.
85.
86.
87.
88.
89.
90.
Lexical gap in cQA search, resulted by the variability of languages, has been recognized as an important and widespread phenomenon. To address the problem, this paper presents a question reformulation scheme to enhance the question retrieval model by fully exploring the intelligence of paraphrase in phrase-level. It compensates for the existing paraphrasing research in a suitable granularity, which either falls into fine-grained lexical-level or coarse-grained sentence-level. Given a question in natural language, our scheme first detects the involved key-phrases by jointly integrating the corpus-dependent knowledge and question-aware cues. Next, it automatically extracts the paraphrases for each identified key-phrase utilizing multiple online translation engines, and then selects the most relevant reformulations from a large group of question rewrites, which is formed by full permutation and combination of the generated paraphrases. Extensive evaluations on a real world data set demonstrate that our model is able to characterize the complex questions and achieves promising performance as compared to the state-of-the-art methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号