首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6371篇
  免费   481篇
  国内免费   12篇
  2023年   18篇
  2022年   39篇
  2021年   129篇
  2020年   86篇
  2019年   131篇
  2018年   175篇
  2017年   136篇
  2016年   235篇
  2015年   423篇
  2014年   403篇
  2013年   458篇
  2012年   560篇
  2011年   501篇
  2010年   325篇
  2009年   279篇
  2008年   425篇
  2007年   362篇
  2006年   321篇
  2005年   292篇
  2004年   289篇
  2003年   221篇
  2002年   211篇
  2001年   90篇
  2000年   80篇
  1999年   73篇
  1998年   48篇
  1997年   33篇
  1996年   23篇
  1995年   16篇
  1994年   20篇
  1993年   16篇
  1992年   35篇
  1991年   35篇
  1990年   23篇
  1989年   30篇
  1988年   28篇
  1987年   29篇
  1986年   25篇
  1985年   20篇
  1984年   16篇
  1983年   11篇
  1982年   12篇
  1981年   14篇
  1980年   11篇
  1979年   22篇
  1977年   12篇
  1976年   11篇
  1975年   18篇
  1974年   16篇
  1973年   10篇
排序方式: 共有6864条查询结果,搜索用时 15 毫秒
101.
102.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an infectious disease with multiple severe symptoms, such as fever over 37.5°C, cough, dyspnea, and pneumonia. In our research, microRNAs (miRNAs) binding to the genome sequences of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory-related coronavirus (MERS-CoV), and SARS-CoV-2 were identified by bioinformatic tools. Five miRNAs (hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-16-5p, and hsa-miR-196a-1-3p) were found to commonly bind to SARS-CoV, MERS-CoV, and SARS-CoV-2. We also identified miRNAs that bind to receptor proteins, such as ACE2, ADAM17, and TMPRSS2, which are important for understanding the infection mechanism of SARS-CoV-2. The expression patterns of those miRNAs were examined in hamster lung samples infected by SARS-CoV-2. Five miRNAs (hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-221-3p, hsa-miR-140-3p, and hsa-miR-422a) showed differential expression patterns in lung tissues before and after infection. Especially, hsa-miR-15b-5p and hsa-miR-195-5p showed a large difference in expression, indicating that they may potentially be diagnostic biomarkers for SARS-CoV-2 infection.  相似文献   
103.
Antimicrobial peptides are class of small, positively charged peptides known for their broad‐spectrum antimicrobial activity. Antimicrobial activities for most antimicrobial peptides have largely remained elusive, particularly in the lactic acid bacteria. However, recently our investigation using LPcin‐YK3, an antimicrobial peptide from bovine milk, suggests that in vitro antimicrobial activity was reduced over 100‐fold compared with pathogenic bacteria. Additionally, for the structural study of how antimicrobial peptide undergoes its reaction at the proteolytic pathway of lactic acid bacteria based on degradation assay and propidium iodide staining, we performed molecular docking for interaction between oligopeptide‐binding protein A and LPcin‐YK3 peptide. Given that degradation related to the LPcin‐YK3 peptide in lactic acid bacteria proteolytic system, the inhibitory inactivity of LPcin‐YK3 against beneficial lactic acid bacteria strains may be one of the primary pharmacological properties of recombinant peptide discovered in bovine milk. These results provide structural and functional insights into the proteolytic mechanism and possibility as a putative substrate of oligopeptide‐binding protein A in respect of LPcin‐YK3 peptide.  相似文献   
104.
Biomolecules, especially proteins and nucleic acids, have been widely studied to develop biochips for various applications in scientific fields ranging from bioelectronics to stem cell research. However, restrictions exist due to the inherent characteristics of biomolecules, such as instability and the constraint of granting the functionality to the biochip. Introduction of functional nanomaterials, recently being researched and developed, to biomolecules have been widely researched to develop the nanobiohybrid materials because such materials have the potential to enhance and extend the function of biomolecules on a biochip. The potential for applying nanobiohybrid materials is especially high in the field of bioelectronics. Research in bioelectronics is aimed at realizing electronic functions using the inherent properties of biomolecules. To achieve this, various biomolecules possessing unique properties have been combined with novel nanomaterials to develop bioelectronic devices such as highly sensitive electrochemical‐based bioelectronic sensing platforms, logic gates, and biocomputing systems. In this review, recently reported bioelectronic devices based on nanobiohybrid materials are discussed. The authors believe that this review will suggest innovative and creative directions to develop the next generation of multifunctional bioelectronic devices.  相似文献   
105.
Insect growth regulators (IGRs) are effective alternatives to chemical insecticides because of their specificity and low environmental toxicity. Entomopathogenic fungi are an important natural pathogen of insects and have been developed as biological control agents. They produce a wide range of secondary metabolites such as antibiotics, pesticides, growth-promoting or inhibiting compounds and insect attracting agents. In this study, to explore novel IGR substances from entomopathogenic fungi, culture extracts of 189 entomopathogenic fungi isolated from Korean soil samples were investigated for their juvenile hormone (JH)-based IGR activities. Whereas none of the culture extracts exhibited JH agonist (JHA) activity, 14 extracts showed high levels of JH antagonist (JHAN) activity. Among them, culture extract of JEF-145 strain, which was identified as Lecanicillium attenuatum, showed the highest insecticidal against Aedes albopictus and Plutella xylostella. At liquid culture condition, JHAN activity was observed in culture soup rather than mycelial cake, indicating that substances with JHAN activity are released from the JEF-145 strain during culture. Furthermore, while extract from solid cultured JEF-145 strain showed insecticidal activities against both A. albopictus and P. xylostella, that from liquid cultured fungi showed insecticidal activity only against A. albopictus, indicating that L. attenuatum JEF-145 strain produces different kinds of secondary metabolites with JHAN activity depending on culture conditions. These results suggested that JHAN substances derived from entomopathogenic fungi could be usefully exploited to develop novel eco-friendly IGR insecticides.  相似文献   
106.
Ubiquitination is a critical post‐translational protein modification that has been implicated in diverse cellular processes, including abiotic stress responses, in plants. In the present study, we identified and characterized a T‐DNA insertion mutant in the At5g10650 locus. Compared to wild‐type Arabidopsis plants, at5g10650 progeny were hyposensitive to ABA at the germination stage. At5g10650 possessed a single C‐terminal C3HC4‐type Really Interesting New Gene (RING) motif, which was essential for ABA‐mediated germination and E3 ligase activity in vitro. At5g10650 was closely associated with microtubules and microtubule‐associated proteins in Arabidopsis and tobacco leaf cells. Localization of At5g10650 to the nucleus was frequently observed. Unexpectedly, At5g10650 was identified as JAV1‐ASSOCIATED UBIQUITIN LIGASE1 (JUL1), which was recently reported to participate in the jasmonate signaling pathway. The jul1 knockout plants exhibited impaired ABA‐promoted stomatal closure. In addition, stomatal closure could not be induced by hydrogen peroxide and calcium in jul1 plants. jul1 guard cells accumulated wild‐type levels of H2O2 after ABA treatment. These findings indicated that JUL1 acts downstream of H2O2 and calcium in the ABA‐mediated stomatal closure pathway. Typical radial arrays of microtubules were maintained in jul1 guard cells after exposure to ABA, H2O2, and calcium, which in turn resulted in ABA‐hyposensitive stomatal movements. Finally, jul1 plants were markedly more susceptible to drought stress than wild‐type plants. Overall, our results suggest that the Arabidopsis RING E3 ligase JUL1 plays a critical role in ABA‐mediated microtubule disorganization, stomatal closure, and tolerance to drought stress.  相似文献   
107.
Lee  Changsu  Song  Hye Seon  Lee  Se Hee  Kim  Joon Yong  Rhee  Jin-Kyu  Roh  Seong Woon 《Archives of microbiology》2021,203(1):261-268
Archives of Microbiology - Extremely halophilic archaea (haloarchaea) belonging to the phylum Euryarchaeota have been found in high-salinity environments. In this study, Halarchaeum sp. CBA1220,...  相似文献   
108.
Cytotechnology - Bone mass is regulated by osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Osteoporosis is a bone metabolism disorder in which bone mass decreases due to...  相似文献   
109.
Oh  Byeong Seob  Kim  Ji-Sun  Ryu  Seoung Woo  Yu  Seung Yeob  Lee  Jung-Sook  Park  Seung-Hwan  Kang  Se Won  Lee  Jiyoung  Lee  Mi-Kyung  Lee  Kang Hyun  Jung  Won Yong  Jung  Hyunjung  Hur  Tai-Young  Kim  Hyeun Bum  Kim  Jae-Kyung  Lee  Ju-Hoon  Jeong  Jae-Ho  Lee  Ju Huck 《Antonie van Leeuwenhoek》2021,114(12):2091-2099

An obligately anaerobic, Gram-stain-positive, non-motile, non-spore-forming and rod-shaped strain AGMB00832T was isolated from swine faeces. Phylogenetic analysis based on the 16S rRNA gene, together with the housekeeping genes, gyrB and rpoD, revealed that strain AGMB00832T belonged to the genus Faecalicatena and was most closely related to Faecalicatena orotica KCTC 15331T. In biochemical analysis, strain AGMB00832T was shown to be negative for catalase, oxidase and urease. Furthermore, the isolate was positive for β-glucosidase, β-glucuronidase, glutamic acid decarboxylase, proline arylamidase, acid phosphatase and naphthol-AS-BI-phosphohydrolase. The major cellular fatty acids (>?10%) of the isolate were C14:0, C16:0 and C18:1ω11t DMA. Based on the whole genome sequence analysis, the DNA G?+?C content of strain AGMB00832T was 44.2 mol%, and the genome size and numbers of rRNA and tRNA genes were 5,175,159 bp, 11 and 53, respectively. The average nucleotide identity and digital DNA–DNA hybridization values between strain AGMB00832T and related strains were ≤?77.4 and 22.5%, respectively. Furthermore, the genome analysis revealed the presence of genes for alkaline shock protein 23 and cation/proton antiporters, which may facilitate growth of strain AGMB00832T in alkaline culture condition. On the basis of polyphasic taxonomic approach, strain AGMB00832T represents a novel species within the genus Faecalicatena, for which the name Faecalicatena faecalis sp. nov. is proposed. The type strain is AGMB00832T (=?KCTC 15946T?=?NBRC 114613T).

  相似文献   
110.
Kim  Juseok  Kim  Joon Yong  Song  Hye Seon  Kim  Yeon Bee  Whon  Tae Woong  Ahn  Seung Woo  Lee  Se Hee  Yoo  SeungRan  Kim  Yu Jin  Myoung  Jinjong  Choi  Yoon-E  Son  Hong-Seok  Roh  Seong Woon 《Antonie van Leeuwenhoek》2021,114(5):507-513

Strain CBA3638T was isolated from the Geum River sediment, Republic of Korea. The cells of strain CBA3638T were Gram-stain-positive, strictly anaerobic, rod-shaped, and 0.5–1.0 μm wide, and 4.0–4.5 μm long. Optimal growth occurred at 37 °C, pH 7.0, and 1.0% (w/v) NaCl. Based on the 16S rRNA gene sequence, the phylogenetic analysis showed that strain CBA3638T belongs to the genus Anaerocolumna in the family Lachnospiraceae, and is most closely related to Anaerocolumna cellulosilytica (94.6–95.0%). The DDH value with A. cellulosilytica SN021T showed 15.0% relatedness. The genome of strain CBA3638T consisted of one circular chromosome that is 5,500,435 bp long with a 36.7 mol% G?+?C content. The genome contained seven 16S-5S-23S rRNA operons and one antibiotic resistance-related transporter gene (mefA). Quinones were not detected. The predominant cellular fatty acids were C16:0 and C14:0 and the polar lipids were diphosphatidylglycerol, phosphatidylcholine, and uncharacterised polar lipids. Based on the polyphasic taxonomic analysis, we propose strain CBA3638T as a novel species in the genus Anaerocolumna, with the name Anaerocolumna sedimenticola sp. nov. The type strain is CBA3638T (=?KACC 21652T?=?DSM 110663T).

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号