首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6094篇
  免费   432篇
  国内免费   2篇
  6528篇
  2023年   29篇
  2022年   68篇
  2021年   120篇
  2020年   78篇
  2019年   108篇
  2018年   165篇
  2017年   151篇
  2016年   224篇
  2015年   374篇
  2014年   383篇
  2013年   422篇
  2012年   563篇
  2011年   479篇
  2010年   320篇
  2009年   276篇
  2008年   365篇
  2007年   333篇
  2006年   282篇
  2005年   285篇
  2004年   279篇
  2003年   241篇
  2002年   170篇
  2001年   95篇
  2000年   98篇
  1999年   70篇
  1998年   31篇
  1997年   30篇
  1996年   37篇
  1995年   22篇
  1994年   15篇
  1993年   23篇
  1992年   30篇
  1991年   23篇
  1990年   22篇
  1989年   18篇
  1988年   18篇
  1987年   24篇
  1986年   20篇
  1985年   18篇
  1984年   14篇
  1983年   16篇
  1982年   12篇
  1981年   12篇
  1980年   12篇
  1979年   15篇
  1976年   12篇
  1975年   16篇
  1974年   14篇
  1971年   11篇
  1968年   12篇
排序方式: 共有6528条查询结果,搜索用时 0 毫秒
61.
In this review, we describe the phosphotransferase system (PTS) of Corynebacterium glutamicum and discuss genes for putative global carbon regulation associated with the PTS. C. glutamicum ATCC 13032 has PTS genes encoding the general phosphotransferases enzyme I, HPr and four enzyme II permeases, specific for glucose, fructose, sucrose and one yet unknown substrate. C. gluamicum has a peculiar sugar transport system involving fructose efflux after hydrolyzing sucrose transported via sucrose EII. Also, in addition to their primary PTS, fructose and glucose are each transported by a second transporter, glucose EII and a non-PTS permease, respectively. Interestingly, C. glutamicum does not show any preference for glucose, and thus co-metabolizes glucose with other sugars or organic acids. Studies on PTS-mediated sugar uptake and its related regulation in C. glutamicum are important because the production yield of lysine and cell growth are dependent on the PTS sugars used as substrates for fermentation. In many bacteria, the PTS is also involved in several regulatory processes. However, the detailed molecular mechanism of global carbon regulation associated with the PTS in this organism has not yet been revealed.  相似文献   
62.
Bacillus licheniformis N1, which has previously exhibited potential as a biological control agent, was investigated to develop a biofungicide to control the gray mold of tomato caused by Botrytis cinerea. Various formulations of B. licheniformis N1 were developed using fermentation cultures of the bacteria in Biji medium, and their ability to control gray mold on tomato plants was evaluated. The results of pot experiments led to the selection of the wettable powder formulation N1E, based on corn starch and olive oil, for evaluation of the disease control activity of this bacterium after both artificial infection of the pathogen and natural disease occurrence under production conditions. In plastic-house artificial infection experiments, a 100-fold diluted N1E treatment was found to be the optimum biofungicide spray formulation. This treatment resulted in the significant reduction of symptom development when N1E was applied before Bo. cinerea infection, but not after the infection. Both artificial infection experiments in a plastic house and natural infection experiments under production conditions revealed that the N1E significantly reduced disease severity on tomato plants and flowers. The disease control value of N1E on tomato plants was 90.5% under production conditions, as compared to the 77% conferred by a chemical fungicide, the mixture of carbendazim and diethofencarb (1:1). The prevention of flower infection by N1E resulted in increased numbers of tomato fruits on each plant. N1E treatment also had growth promotion activity, which showed the increased number of tomato fruits compared to fungicide treatment and non-treated control and the increased fruit size compared the non-treated control under production conditions. This study suggests that the corn starch-based formulation of B. licheniformis developed using liquid fermentation will be an effective tool in the biological control of tomato gray mold.  相似文献   
63.
C-type lectins play important roles in the non-self innate immune system of invertebrates. In this study, we isolated the full-length cDNA of the C-type lectin like-domain (CTLD)-containing protein, designated PtLP, from the hepatopancreas of the swimming crab Portunus trituberculatus, one of the most common edible crabs of East Asia. The PtLP cDNA consists of 923bp and encodes a polypeptide of 164 amino acids containing a well-conserved C-type lectin like-domain (CTLD). The deduced amino acid sequence of PtLP shows 29-36% amino acid sequence identity to other crustacean C-type lectin sequences. A phylogenetic analysis revealed that PtLP is in a large cluster together with black tiger shrimp PmAV, a gene involved in virus resistance of shrimp, and all of the C-type lectins from the various shrimps. Quantitative RT-PCR analysis showed that the PtLP mRNA was expressed highly in hepatopancreas and moderately in gills, hemocytes, and ovary of normal swimming crabs.  相似文献   
64.
Phomopsis seed decay (PSD), primarily caused by Phomopsis longicolla, is a major contributor to poor soybean seed quality and significant yield loss, particularly in early maturing soybean genotypes. However, it is not yet known whether PSD resistance is associated with early maturity. This study was conducted to identify quantitative trait loci (QTLs) for resistance to PSD and days to maturity using a recombinant inbred line (RIL) population derived from a cross between the PSD-resistant Taekwangkong and the PSD-susceptible SS2-2. Based on a genetic linkage map incorporating 117 simple sequence repeat markers, QTL analysis revealed two and three QTLs conferring PSD resistance and days to maturity, respectively, in the RIL population. Two QTLs (PSD-6-1 and PSD-10-2) for PSD resistance were identified in the intervals of Satt100–Satt460 and Sat_038–Satt243 on chromosomes 6 and 10, respectively. Two QTLs explained phenotypic variances in PSD resistance of 46.3 and 14.1 %, respectively. At the PSD-6-1 QTL, the PSD-resistant cultivar Taekwangkong contributed the allele with negative effect decreasing the infection rate of PSD and this QTL does not overlap with any previously reported loci for PSD resistance in other soybean genotypes. Among the three QTLs for days to maturity, two (Mat-6-2 and Mat-10-3) were located at positions similar to the PSD-resistance QTLs. The identification of the QTLs linked to both PSD resistance and days to maturity indicates a biological correlation between these two traits. The newly identified QTL for resistance to PSD associated with days to maturity in Taekwangkong will help improve soybean resistance to P. longicolla.  相似文献   
65.
66.
67.
Moon EK  Chung DI  Hong YC  Kong HH 《Eukaryotic cell》2008,7(9):1513-1517
Members of the genus Acanthamoeba, amphizoic protozoan parasites, are causative agents of granulomatous amoebic encephalitis and amoebic keratitis. Proteinases play a role in various biologic actions in Acanthamoeba, including host tissue destruction, pathogenesis, and digestion of phagocytosed food. Interestingly, we found that encystation of Acanthamoeba was inhibited by the serine proteinase inhibitor phenylmethanesulfonyl fluoride. In this study, we characterize a serine proteinase that is involved in mediating the encystation of Acanthamoeba. This encystation-mediating serine proteinase (EMSP) is shown to be highly expressed during encystation by real-time PCR and Western blot analysis. Chemically synthesized small interfering RNA against EMSP inhibited the expression of EMSP mRNA and significantly reduced the encystation efficiency of Acanthamoeba. An EMSP-enhanced green fluorescent protein fusion protein localized to vesicle-like structures within the amoeba. Using LysoTracker analysis, these vesicular structures were confirmed to be lysosomes. After incubation of the transfected amoeba in encystment media, small fluorescent vesicle-like structures gathered and formed ball-like structures, which were identified as colocalizing with the autophagosome. Taken together, these results indicate that EMSP plays an important role in the differentiation of Acanthamoeba by promoting autolysis.  相似文献   
68.
Lee JH  Chung KY  Bang D  Lee KH 《Proteomics》2006,6(4):1351-1361
Endothelial cells constitute an interface between blood and tissue and act as a medium for active interaction between plasma and the intracellular environment for homeostasis. Aging of endothelial cells plays a significant role in the pathophysiology of age-related vascular diseases; however, precise mechanisms for senescence have not been elucidated. Proteomics allows identification of protein structures, functions, and characteristics, and can be applied to the study of aging processes. Using cultured human dermal microvascular endothelial cells and two-dimensional proteomic mapping, we studied the effects of kinetin, epigallocatechin-3-gallate, all-trans-retinoic acid, and selenium on their senescence and searched for the aging-related proteins. The treatments resulted in 68 qualitative changes and 172 quantitative changes, and we were able to identify 46 spots among them. All of the agents indicated above induced changes in the expression of moesin, rho guanosine-5'-diphosphate-dissociation inhibitor, and actin, confirmed by immunoblotting and confocal laser microscopy. As these proteins were associated with cell cycle and cytoskeleton, immunoblotting of the proteins related to cell cycle was performed. Although practical significance remains to be confirmed by in vivo research, this fundamental discovery may provide a basis for understanding the mechanism of aging and age-related diseases.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号