首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21502篇
  免费   1744篇
  国内免费   460篇
  23706篇
  2023年   143篇
  2022年   428篇
  2021年   577篇
  2020年   396篇
  2019年   500篇
  2018年   573篇
  2017年   472篇
  2016年   692篇
  2015年   1159篇
  2014年   1239篇
  2013年   1420篇
  2012年   1800篇
  2011年   1688篇
  2010年   1046篇
  2009年   908篇
  2008年   1239篇
  2007年   1091篇
  2006年   972篇
  2005年   878篇
  2004年   869篇
  2003年   714篇
  2002年   583篇
  2001年   493篇
  2000年   451篇
  1999年   392篇
  1998年   180篇
  1997年   124篇
  1996年   127篇
  1995年   121篇
  1994年   106篇
  1993年   105篇
  1992年   209篇
  1991年   173篇
  1990年   161篇
  1989年   158篇
  1988年   114篇
  1987年   110篇
  1986年   117篇
  1985年   117篇
  1984年   74篇
  1983年   81篇
  1982年   63篇
  1981年   62篇
  1980年   66篇
  1979年   101篇
  1978年   73篇
  1977年   65篇
  1976年   63篇
  1975年   55篇
  1974年   65篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
H Bertrand  B S Chan  A J Griffiths 《Cell》1985,41(3):877-884
The kalilo variants of Neurospora contain a cytoplasmic genetic factor that causes senescence. This factor is a 9.0 kb transposable element (kalDNA) that lacks nucleotide sequence homology with mtDNA and is inserted into the mitochondrial chromosome, often at sites located within the open reading frame in the intron-DNA of the mitochondrial 25S-rRNA gene. Genomes containing the "foreign" DNA insert accumulate during growth, and death occurs as the cells become deficient in functional large and small subunits of mitochondrial ribosomes. The kalDNA transposon may be an "activator" element that causes breaks in mtDNA. Nonsenescing [+] strains of Neurospora do not contain kalDNA.  相似文献   
22.
Complexation and phase transfer of nucleotides by gramicidin S   总被引:1,自引:0,他引:1  
E M Krauss  S I Chan 《Biochemistry》1983,22(18):4280-4291
Gramicidin S (GrS), an amphiphilic cyclosymmetric decapeptide produced by Bacillus brevis G-B and Nagano, binds nucleotides in water to yield a complex which partitions into organic solvents. The observed phase-transfer efficiencies at a given pH increase in the order AMP less than ADP less than ATP. The lipophilic complexes have well-defined stoichiometries, which were determined to be 1:1 for ADP-GrS at pH 7 and ATP-GrS at pH 3 and 1:2 for ATP-GrS at pH 7. The interaction is primarily ionic, involving coordination of the ornithine N delta H3+ groups of the peptide and the phosphoryl groups of the nucleotide, with little contribution from the nucleoside moiety. Exchange of organic and inorganic phosphates was also found to be mediated by GrS. The nucleotide complexes are sparingly soluble in water and self-associate extensively in CHCl3, most likely by cross-beta-aggregation, to yield large, ribbonlike aggregates which give rise to broad NMR resonances. Structures for the 1:1 and 1:2 complexes are proposed. In the latter, two GrS molecules envelop the nucleotide, orienting their apolar faces externally in opposite directions, while the lateral faces retain considerable polar character and direct aggregation in organic media. The 1:1 complex possesses a single apolar face and is less lipophilic. Binding constants were estimated by simulation of the extraction data. For the 1:1 complexes, K1:1 congruent to 4 X 10(4) M-1 for either ADP or ATP. Phase transfer of the ATP complex at pH 7 could be modeled either by stochastically independent binding to two noninteracting sites on the nucleotide with K1 approximately K2 approximately K1:1 or by a sequential process with K1 approximately K1:1 and K2/K1 less than 100. It is concluded that the apparent selectivity of GrS for ATP over ADP is a consequence of the greater lipophilicity and tendency to aggregate of the 1:2 complex, rather than an intrinsically higher binding affinity for triphosphates. GrS is, to our knowledge, the first peptide known to possess phase-transfer activity toward nucleotides; this is, in addition, the first molecular recognition process in which GrS is demonstrated to participate in vitro at physiologically active concentrations.  相似文献   
23.
24.
25.
Escherichia coli K-12 strain AB259 can be induced to form capsular polysaccharide (mucoid clones) by dl-p-fluorophenylalanine (FPA; 5 x 10(-6)m on agar plates at 37 C or 8 x 10(-5)m in liquid medium at 30 C). The change was shown to be phenotypic. An increase in enzymes probably involved in capsular polysaccharide synthesis [phosphomannose isomerase (3.3-fold), uridine diphosphate-d-galactose-4-epimerase (2.5-fold), and guanine diphosphate-l-fucose synthetase] was demonstrated as a result of growth in FPA. These increases appear sufficient to account for the increased synthesis of capsular polysaccharide due to growth in FPA. FPA-resistant derivatives of strain AB259 were obtained by selecting mutants on FPA-containing agar or by transducing in an altered phenylalanyl soluble ribonucleic acid synthetase that activates FPA poorly. Mucoid clones were formed by these strains only in the presence of 30 to 1,000 times as much FPA. Among these strains, there was a close correlation between incorporation of FPA-C(14) and induction of capsular polysaccharide synthesis. The results are thus consistent with the following model: FPA is incorporated into the protein product of the R(1) gene (repressor) and alters it sufficiently to allow derepression of several enzymes.  相似文献   
26.
In the last few years, we have focused our research effort on the magnetic resonance spectroscopic (NMR) studies of organ transplantation in the rat. P-31 NMR was employed to study changes in high-energy phosphates, intracellular pH in vivo of transplanted kidneys either during normal function, while undergoing the rejection process or subjected to other insults (e.g. ischemia, cyclosporine nephrotoxicity, urinary obstruction) which may also cause graft dysfunction. Nuclear magnetic resonance (NMR) parameters, specifically relative peak areas and intracellular pH, accurately distinguished among the different causes of graft dysfunction. Ureteral obstruction was clearly identified by elevations in the phosphodiester/urine phosphate peak. Ischemia and rejection were both associated with increases in inorganic phosphates and phosphomonesters and decreases in the beta-phosphate peak of adenosine triphosphate but were distinguishable from each other by differences in intracellular pH which was normal in rejected allografts (7.33 +/- 0.07, n = 3) and low in ischemic allografts (7.00 +/- 0.05, n = 3, p less than 0.05). Grafts insulted with cyclosporine toxicity were not distinguishable from normal allografts by any of the parameters studied. To determine the temporal relationship of NMR changes in allograft rejection, similar studies were performed serially in a group of rejecting (R) kidneys (n = 7) and compared with a control group of nonrejecting (NR) kidneys (n = 7). Major decrease in adenosine triphosphate (ATP) with increases in Pi and a marked increase in the Pi/ATP ratio were noted in the R allografts over time. The R allografts could be completely segregated from the NR allografts on the basis of the Pi/ATP ratio by day 7. These data suggest that 31P NMR spectroscopy may have potential clinical application in differentiating among the causes of graft failure of human renal allografts.  相似文献   
27.
28.
1. Prostaglandins A1, B1, E1 and F1 alpha (2-120 micrograms/kg), arachidonic acid and dihomo-gamma-linolenic acid (0.1-2 mg/kg) were injected intravenously into Channa maculata and changes in arterial blood pressure were recorded. 2. Injection of PGF1 alpha had no significant effect on arterial blood pressure. Injection of PGA1 and PGE1 was followed by dose-dependent hypotension whereas injection of PGB1 elicited significant dose-dependent increase in arterial blood pressure. 3. Both dihomo-gamma-linolenic acid and arachidonic acid were also depressor agents but dihomo-gamma-linolenic acid was more potent. 4. A single bolus intravenous injection of indomethacin (5 mg/kg) or 4 daily intraperitoneal injections (4 x 10 mg/kg) significantly lowered arterial blood pressure. One hour after pre-treatment of indomethacin, the vascular effects of both prostaglandin precursors were abolished. 5. It appears that the vascular effects of prostaglandins in Channa maculata are qualitatively different from those reported for mammals.  相似文献   
29.
Normal cell growth in the yeast Saccharomyces cerevisiae involves the selection of genetically determined bud sites where most growth is localized. Previous studies have shown that BEM2, which encodes a GTPase-activating protein (GAP) that is specific for the Rho-type GTPase Rho1p in vitro, is required for proper bud site selection and bud emergence. We show here that DBM1, which encodes another putative Rho-type GAP with two tandemly arranged cysteine-rich LIM domains, also is needed for proper bud site selection, as haploid cells lacking Dbm1p bud predominantly in a bipolar, rather than the normal axial, manner. Furthermore, yeast cells lacking both Bem2p and Dbm1p are inviable. The nonaxial budding defect of dbm1 mutants can be rescued partially by overproduction of Bem3p and is exacerbated by its absence. Since Bem3p has previously been shown to function as a GAP for Cdc42p, and also less efficiently for Rho1p, our results suggest that Dbm1p, like Bem2p and Bem3p, may function in vivo as a GAP for Cdc42p and/or Rho1p. Both LIM domains of Dbm1p are essential for its normal function. Point mutations that alter single conserved cysteine residues within either LIM domain result in mutant forms of Dbm1p that can no longer function in bud site selection but instead are capable of rescuing the inviability of bem2 mutants at 35 degrees C.  相似文献   
30.
Based on the concern of organochlorides in the environment and in human tissue, this study was designed to determine whether various noncytotoxic levels of heptachlor and heptachlor epoxide could inhibit, reversibly, gap junctional intercellular communication in human breast epithelial cells (HBEC). Cytotoxicity and gap junctional intercellular communication (GJIC) were evaluated by lactate dehydrogenase assay and fluorescence redistribution after photobleaching analysis, respectively. Both heptachlor and heptachlor epoxide were noncytotoxic up to 10 μg/ml. At this concentration, heptachlor and heptachlor epoxide inhibited GJIC of normal human breast epithelial cells after 1 h treatment. Within a 24 h treatment with heptachlor and heptachlor epoxide at 10 μg/ml, recovery of GJIC had not returned. GJIC completely recovered after a 12 h treatment of 1 μg/ml heptachlor epoxide, but it did not recover after a 24 h treatment of 1 μg/ml heptachlor. RT-PCR and Western blots were analyzed to determine whether the heptachlor or heptachlor epoxide might have altered the steady-state levels of gap junction mRNA and/or connexin protein levels or phosphorylation state. No significant difference in the level of connexin 43 (Cx43) message between control and heptachlor-treated cells was observed. Western blot analyses showed hypophosphorylation patterns in cells treated with 10 μg/ml heptachlor and heptachlor epoxide for 1 h with no recovery within 24 h. Immunostaining of Cx43 protein in normal HBEC indicated that heptachlor and heptachlor epoxide caused a loss of Cx43 from the cell membranes at noncytotoxic dose levels. Taken together, these results suggest that heptachlor and heptachlor epoxide can alter GJIC at the post-translational level, and that, under the conditions of exceeding a threshold concentration in the breast tissue containing ‘initiated’ cells for a long time and not being counteracted by anti-tumor-promoting chemicals, they could act as breast tumor promoters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号