首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   27篇
  209篇
  2021年   3篇
  2020年   3篇
  2019年   2篇
  2017年   5篇
  2016年   7篇
  2015年   9篇
  2014年   9篇
  2013年   6篇
  2012年   6篇
  2011年   10篇
  2010年   6篇
  2009年   13篇
  2008年   7篇
  2007年   7篇
  2006年   18篇
  2005年   5篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   6篇
  1999年   4篇
  1998年   3篇
  1997年   2篇
  1996年   1篇
  1995年   3篇
  1994年   4篇
  1993年   5篇
  1992年   10篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   3篇
  1977年   2篇
  1975年   1篇
  1974年   2篇
  1969年   2篇
  1933年   1篇
排序方式: 共有209条查询结果,搜索用时 15 毫秒
61.
62.
The Φ model for plant mating system evolution proposes a causal link between Φ, the number of mitoses that occur within a plant's lifetime from zygote to gamete production, and constraints on the evolution of inbreeding depression and thereby on the evolution of plant mating systems. Through its use of plant stature, the Φ model emphasizes the important role of morphology in creating developmental and genetic constraints on plant evolution. However, the estimation of Φ itself is likely to be extraordinarily complex. Here I describe a protocol for estimating Φ per meter linear growth by an apical meristem (Φ/m) using medial pith cells from mature internodes of twigs. While such cells are produced by the apical meristem, during internode elongation, these pith cells also undergo further mitoses, and thus their measurement can only approximate a "true" Φ/m via the application of a multiplier (the adjustment ratio) that partially corrects for the occurrence of cell divisions and cell growth beyond the apical meristem. I applied this method to Delonix regia (Caesalpiniaceae) and derived several adjustment ratios from the literature. Because variation in Φ/m can have profound evolutionary implications, I also examined interspecific and intraspecific variation as well as within-individual variation in Φ/m. Conifers apparently have lower Φ/m than do angiosperms, while 20% of the total variance in Φ/m for D. regia was found among individual trees, with the remainder found within trees. Given the large differences in stature between "high-Φ" plants such as trees and "low-Φ" plants such as herbs, these results support the idea that the total per-generation mutation rate for high-Φ plants is likely to be many times higher than that for low-Φ plants.  相似文献   
63.

Background and Aims

Carbohydrate temporarily accumulates in wheat stems during the early reproductive growth phase, predominantly as water soluble carbohydrate (WSC), and is subsequently remobilized during grain filling. Starch has also been reported as a minor storage carbohydrate component in wheat stems, but the details are lacking.

Methods

The accumulation and localization of starch in wheat stem and leaf sheath tissue over a developmental period from 6 d before anthesis to 35 d after anthesis was investigated.

Key Results

The region of the peduncle enclosed by the flag-leaf sheath, and the penultimate internode were the main tissues identified as containing starch, in which the starch grains localized to the storage parenchyma cells. In contrast, the exposed peduncle lacked starch grains. Starch grains were also found in the flag-leaf and second-leaf sheath. Plants grown in low-nitrogen conditions exhibited increased storage of both starch and WSC compared with plants grown in high-nitrogen supply.

Conclusions

The major accumulation and decrease of starch occurred temporally independently to that for WSC, suggesting a different functional role for starch in wheat stems. Starch reutilization concomitant with peduncle growth, and the early development of the reproductive structures, suggested a role in provision of energy and/or carbon scaffolds for these growth processes.Key words: Carbohydrate partitioning, peduncle, starch, wheat stem, storage parenchyma, Triticum aestivum  相似文献   
64.
Antibiotics such as chlortetracycline (CTC) have been used to promote growth of pigs for decades, but concerns over increased antibiotic-resistant infections in humans have prompted the development of alternative strategies. Developing alternatives to antibiotic growth promoters (AGPs) could be informed by information on the mechanisms of growth promotion, notably, how AGPs affect the microbial populations of the gastrointestinal tract. Pigs from three sows were aseptically delivered by cesarean section. Six piglets were distributed to each of two foster mothers until weaning, when piglets were fed a diet with or without 50 mg/kg CTC for 2 weeks. The ileal bacterial microbiota was characterized by using a cultivation-independent approach based on DNA extraction, PCR amplification, cloning, and sequencing of the 16S rRNA gene pool. The ileal and mucosal communities of these growing pigs were dominated by Lactobacillus bacteria, various members of the family Clostridiaceae, and members of the poorly known genus Turicibacter. Overall, CTC treatment resulted in three shifts: a decrease in Lactobacillus johnsonii, an increase in L. amylovorus, and a decrease in Turicibacter phylotypes. The composition of the microbiota varied considerably between individual pigs, as revealed by shared operational taxonomic units (OTUs) and similarity (SONS) analysis (θYC values). While the observed variation between untreated pigs obscured the possible effect of CTC, ∫-LIBSHUFF and SONS analyses of pooled libraries indicated a significant shift due to CTC in both the lumen and the mucosa, with some OTUs unique to either treated or control ileum. DOTUR analysis revealed little overlap between control and treated communities at the 3% difference level, indicating unique ileal communities in the presence of CTC.Antibiotics have been used to promote animal growth for over 50 years. Antibiotic growth promoters (AGPs) such as tylosin, bacitracin, virginiamycin, and chlortetracycline (CTC) have been fed to pigs, chickens, and other animals to promote growth through increased feed intake, weight gain, and improved herd health (7, 36). Use of AGPs has come under increasing pressure with the growing consensus that their use leads to increased antibiotic-resistant infections in humans via generation of reservoirs of antibiotic-resistant bacteria that may enter the food chain through contamination (38, 46). The increasing concerns about antibiotic resistance have raised questions about whether the potential risks are worth the beneficial effects (44). Development of non-antibiotic-based alternative strategies to promote animal growth may benefit through increased understanding of AGP mechanisms of growth promotion.The growth-promoting impact of antibiotics was first described in the 1940s, and their use soon became routine (29, 35). The gastrointestinal (GI) tract harbors a great diversity of bacteria at a very high density (27). The increased growth and feed efficiency promoted by AGPs may be due to alteration of the microbiota of the GI tract. Early hypotheses focused on the suppression of pathogenic bacteria (19), but the broad-spectrum antibiotics used as growth promoters do not target specific species. Suggested mechanisms of action have included suppression of subclinical infections, a decrease in the levels of growth-depressing bacterial metabolites, decreased consumption of nutrients by intestinal microbiota, and improvement of nutrient uptake due to a thinner intestinal wall (14, 48). Data on the effect of AGPs on pig intestinal microbiota are needed in order to determine the relative contributions of the various proposed mechanisms. Much of the evidence available points to the action of antibiotics on intestinal bacteria as the main component responsible for the growth effect on animals (17, 20, 36).Traditional culture methods have provided some insights into pig GI microbiota, but culture-independent techniques utilizing analysis of rRNA genes have revealed a far greater diversity. Culture-independent methods have also helped to further our understanding of bacterial population dynamics and the complex interplay between the host and pathogenic and nonpathogenic bacteria. The construction of a large 16S rRNA bacterial clone library from the pig GI tract identified 375 phylotypes by using a similarity criterion of 97% (27). Studies utilizing denaturing gradient gel electrophoresis have shown the microbial variances between compartments of the pig intestinal tract, the effect of the diet on microbial communities of the colon, and the ileal microbiota changes produced by the use of several types of AGP (5, 28, 45). Each technique can hold its own bias or limitation, but combinations of fingerprinting and PCR techniques have led to a greater understanding of the composition of pig GI microbiota and their ecology (16, 49, 50).Studies on the effect of antibiotics on intestinal microbiology have focused on colonic or fecal microbiota because bacterial densities are highest (14) and sampling is noninvasive, allowing temporal studies. Yet, nutrient uptake occurs primarily in the small intestine, the region where bacterial activity would therefore have the greatest influence on growth (14). Demands on the GI tract to respond to bacteria by increased mucus production occur primarily in the small intestine (13). The main growth-promoting effect of antibiotics is therefore more likely to occur in the small intestine, specifically in the ileum, where bacterial numbers have reached a high density. One study showed that AGPs, including bacitracin, CTC, and tylosin, caused a shift in the ileal microbial profile of pigs (5). In that study, only one pig was used per treatment, so the basal variation in microbiota between individuals was not taken into account.The objective of this study was to examine how the AGP CTC affects the microbial community of the porcine ileum. To account for variation in the intestinal microbiota as influenced by both antenatal and postnatal environment, pigs from three separate sows were aseptically delivered by cesarean (C) section and distributed to two foster mothers until weaning, when piglets were fed a diet either with or without the AGP CTC. A cultivation-independent approach based on DNA extraction, PCR amplification, and cloning and sequencing of the 16S RNA gene was taken to characterize the pig ileal microbiota.  相似文献   
65.
Two-dimensional gel electrophoresis (2DE) and SDS-PAGE are the two most useful methods in protein separation. Proteins separated by 2DE or SDS-PAGE are usually transferred to membranes using a variety of methods, such as electrophoretic transfer, heat-mediated transfer, or nonelectrophoretic transfer, for specific protein detection and/or analysis. In a recent study, Pettegrew et al.1 claim to reuse transfer buffer containing methanol for at least five times for transferring proteins from SDS-PAGE to polyvinylidene difluoride. They add 150–200 ml fresh transfer solution each time for extended use as a result of loss of transfer buffer. Finally, they test efficiency of each protein transfer by chemiluminescence detection. Here, we comment on this report, as we believe this method is not accurate and useful for protein analysis, and it can cause background binding as well as inaccurate protein analysis.  相似文献   
66.
The sucrose transporter gene family in rice   总被引:20,自引:0,他引:20  
  相似文献   
67.
W Wang  R Skopp  M Scofield    C Price 《Nucleic acids research》1992,20(24):6621-6629
We have identified two 1.6 kb macronuclear DNA molecules from Euplotes crassus that hybridize to the alpha subunit of the Oxytricha telomere protein. We have shown that one of these molecules encodes the 51 kDa Euplotes telomere protein while the other appears to encode a homolog of the telomere protein. Although this homolog clearly differs in sequence from the Euplotes telomere protein, the two proteins share extensive amino acid sequence identity with each other and with the alpha subunit of the Oxytricha telomere protein. In all three proteins 35-36% of the amino acids are identical, while 54-56% are similar. The most extended regions of sequence conservation map within the N-terminal section; this section has been shown to comprise the DNA-binding domain in the Euplotes telomere protein. Our findings suggest that some of the conserved amino acids may be involved in DNA recognition and binding. The gene encoding the telomere protein homolog contains two introns; one of these introns is only 24 bp in length. This is the smallest mRNA intron reported to date.  相似文献   
68.
Salt-detergent extraction of purified plant nuclei yields a fraction enriched in putative structural proteins known as the nuclear matrix. Compared with mammalian nuclear matrices, which contain three major proteins, plant nuclear matrices are complex, containing at least 100 polypeptides. In order to characterise more fully the plant nuclear matrix we have used antibodies raised against both yeast (Saccharomyces cerevisiae) and mammalian (rat) nuclear pore proteins. We have shown that the nuclear matrix of carrot (Daucus carota L.) contains at least one nucleoporin-like protein of about 100 kDa which is immunologically related to both the yeast nuclear pore protein NSP1 and mammalian nucleoporins (p62). Antibody labelling of a variety of plant cells at the light-microscope and electron-microscope levels confirms that this antigen is located at the nuclear pores. This, to our knowledge, is the first identification of a nuclear pore protein in plants.Abbreviations IgG immunoglobulin G - kDa kilodaltons - DAPI 4,6-diamidino-2-phenylindole - FITC fluorescein isothioganate The authors would like to thank Dr. E. Hurt (European Molecular Biology Laboratory, Heidelberg, FRG) for antibodies against yeast nucleoporins, and Dr. L. Davis (Whitehead Institute for Biomedical Research, Cambridge, Mass., USA) for the monoclonal antibodies MAb 414 & 350. We thank Brian Wells for useful advice on electron microscopy. We also thank Peter Scott, Andrew Davis, and Nigel Hannant for photography, and Sue Bunnewell for development and printing of electronmicrographs.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号