首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   1篇
  2022年   1篇
  2020年   1篇
  2018年   1篇
  2017年   4篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   8篇
  2012年   9篇
  2011年   7篇
  2010年   4篇
  2008年   7篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  1997年   2篇
  1993年   1篇
  1988年   2篇
  1984年   1篇
  1973年   1篇
  1967年   4篇
  1966年   1篇
排序方式: 共有91条查询结果,搜索用时 31 毫秒
51.
52.
Neurochemical Research - Mitochondrial respiratory chain complexes enzymatic (MRCCE) activities were successfully evaluated in frozen brain samples. Epilepsy surgery offers an ethical opportunity...  相似文献   
53.
Accumulation of visceral fat is a key phenomenon in the onset of obesity-associated metabolic disorders. Macrophage infiltration induces chronic mild inflammation widely considered as a causative factor for insulin resistance and eventually diabetes. We previously showed that >90% of macrophages infiltrating the adipose tissue of obese animals and humans are arranged around dead adipocytes, forming characteristic crown-like structures (CLS). In this study we quantified CLS in visceral and subcutaneous depots from two strains of genetically obese mice, db/db and ob/ob. In both strains, CLS were prevalent in visceral compared with subcutaneous fat. Adipocyte size and CLS density exhibited a positive correlation both in visceral and in subcutaneous depots; however, the finding that adipocyte size was smallest and CLS density highest in visceral fat suggests a different susceptibility of visceral and subcutaneous adipocytes to death. Visceral fat CLS density was 3.4-fold greater in db/db than in ob/ob animals, which at the age at which our experimental strain was used are more prone to glucose metabolic disorders.  相似文献   
54.
Interactions of chemicals with cerebral cellular systems are often accompanied by similar changes involving components in non-neural tissues. On this basis, indirect strategies have been developed to investigate neural cell function parameters by methods using accessible cells, including platelets and/or peripheral blood lymphocytes. Therefore, here it was investigated whether peripheral blood markers may be useful for assessing the central toxic effects of methylmercury (MeHg). For this purpose, we investigated platelet mitochondrial physiology in a well-established mouse model of MeHg-induced neurotoxicity, and correlated this peripheral activity with behavioural and central biochemical parameters. In order to characterize the cortical toxicity induced by MeHg (20 and 40 mg/L in drinking water, 21 days), the behavioral parameter namely, short-term object recognition, and the central mitochondrial impairment assessed by measuring respiratory complexes I-IV enzyme activities were determined in MeHg-poisoned animals. Neurotoxicity induced by MeHg exposure provoked compromised cortical activity (memory impairment) and reduced NADH dehydrogenase, complex II and II-III activities in the cerebral cortex. These alterations correlated with impaired systemic platelet oxygen consumption of intoxicated mice, which was characterized by reduced electron transfer activity and uncoupled mitochondria. The data brought here demonstrated that impaired systemic platelet oxygen consumption is a sensitive and non-invasive marker of the brain energy deficits induced by MeHg poisoning. Finally, brain and platelets biochemical alterations significantly correlated with cognitive behavior in poisoned mice. Therefore, it could be proposed the use of platelet oxygen consumption as a peripheral blood marker of brain function in a mouse model MeHg-induced neurotoxicity.  相似文献   
55.
Design and synthesis of organoselenium compounds with high thiol peroxidase (TPx) and low thiol oxidase (TOx) activities have been a difficult task and remains a synthetic-activity relationship dilemma. In this regard we are reporting for the first time a detail experimental data (both in vitro and in vivo) about the anti-oxidant and toxicological profile of an Imine (–N) containing organoselenium compound (Compound A). The TPx activity of Compound A was significantly higher than diphenyl diselenide (DPDS). Both Compound A and DPDS protected sodium nitropruside (SNP) induced thiobarbituric acid reactive species (TBARS) production in rats tissue homogenate with significantly higher activity observed for Compound A than DPDS (p < 0.05). The Compound A also exhibited strong antioxidant activity in the DPPH and ABTS radical scavenging assays. This study reveals that an imine group close to selenium atom drastically enhances the catalytic activities in the aromatic thiol (PhSH) assay systems. The oxidation of biologically significant thiols reflects the toxicity of the compounds. However, the present data showed that treatment with Compound A at 0, 10, 25 or 50 mg/kg was not associated with mortality or body weight loss. Similarly it did not inhibit α-ALA-D and Na+1/K+1 ATPase (sulfhydryl group containing enzymes) activities after acute oral treatment; rather it enhanced non-protein thiols (NPSH) concentration. The Compound A did not cause any oxidative stress as measured by TBARS production in rat's tissue preparation. Our data also indicate that exposure to Compound A did not affect plasma transaminase activities or levels of urea and creatinine in rats. Ascorbic acid is always considered a marker of oxidative stress and the reduction of its content may indicate an increase in oxidative stress. Treatment with Compound A did not alter Ascorbic acid levels in rats. The conducted in vitro and in vivo tests show the versatile therapeutic potential of this compound in the area of free radical induced damages, will undoubtedly enhance our understanding of the mechanism of model compounds and may ultimately yield insights that result in improved GPx mimics.  相似文献   
56.
Patients affected by medium-chain acyl-CoA dehydrogenase deficiency (MCADD) suffer from acute episodes of encephalopathy whose underlying mechanisms are poorly known. The present work investigated the in vitro effect of cis-4-decenoic acid (cDA), which accumulates in MCADD, on important parameters of oxidative stress in cerebral cortex of young rats. cDA markedly induced lipid peroxidation, as verified by the increased levels of spontaneous chemiluminescence and thiobarbituric acid-reactive substances. Furthermore, cDA significantly increased carbonyl formation and sulphydryl oxidation, which is indicative of protein oxidative damage, and promoted 2',7'-dihydrodichlorofluorescein oxidation. It was also observed that the non-enzymatic tissue antioxidant defenses were decreased by cDA, whereas the antioxidant enzyme activities catalase, superoxide dismutase and glutathione peroxidase were not altered. Moreover, cDA-induced lipid peroxidation and GSH reduction was totally blocked by free radical scavengers, suggesting that reactive species were involved in these effects. The data indicate that oxidative stress is induced by cDA in rat brain in vitro and that oxidative damage might be involved in the pathophysiology of the encephalopathy in MCADD.  相似文献   
57.
Diabetes aggravates the clinical severity and represents an additional independent risk factor of hypertension. Since both diseases separately concur to cardiomyocyte apoptosis, a mechanism at least partly involving unbalanced oxidative stress, we investigated whether the combination of diabetes and hypertension potentiated cardiac cell death in experimental models, compared to either disease alone. We also evaluated the short-term effects of different drugs in these models. Streptozotocin-induced diabetic normotensive (WKY) or hypertensive (SHR) rats were treated for one week with a DA(2)/alpha(2) agonist (CHF-1024), a selective beta1 adrenergic blocker (metoprolol), an angiotensin II-receptor blocker (valsartan) or a radical scavenger (tempol). In separate experiments, isolated cardiomyocytes were cultured in high glucose medium (25 mM) containing the same drugs. Although the number of apoptotic cardiomyocytes and the myocardial density of oxygen radicals were higher in non diabetic hypertensive than in normotensive controls, diabetes raised these variables to comparable absolute levels in both strains. All drugs except metoprolol significantly reduced apoptosis and oxidative stress in the diabetic animals of both strains and in the isolated myocytes cultured with high glucose. In conclusion, hypertensive rat is no more susceptible than its normotensive control to acute apoptosis induced by diabetes. Oxidative stress might be considered the common trigger for cardiac myocyte apoptosis in both conditions.  相似文献   
58.
59.
The axon guidance cues semaphorins (Semas) and their receptors plexins have been shown to regulate both physiological and pathological angiogenesis. Sema4A plays an important role in the immune system by inducing T cell activation, but to date, the role of Sema4A in regulating the function of macrophages during the angiogenic and inflammatory processes remains unclear. In this study, we show that macrophage activation by TLR ligands LPS and polyinosinic-polycytidylic acid induced a time-dependent increase of Sema4A and its receptors PlexinB2 and PlexinD1. Moreover, in a thioglycollate-induced peritonitis mouse model, Sema4A was detected in circulating Ly6C(high) inflammatory monocytes and peritoneal macrophages. Acting via PlexinD1, exogenous Sema4A strongly increased macrophage migration. Of note, Sema4A-activated PlexinD1 enhanced the expression of vascular endothelial growth factor-A, but not of inflammatory chemokines. Sema4A-stimulated macrophages were able to activate vascular endothelial growth factor receptor-2 and the PI3K/serine/threonine kinase Akt pathway in endothelial cells and to sustain their migration and in vivo angiogenesis. Remarkably, in an in vivo cardiac ischemia/reperfusion mouse model, Sema4A was highly expressed in macrophages recruited at the injured area. We conclude that Sema4A activates a specialized and restricted genetic program in macrophages able to sustain angiogenesis and participates in their recruitment and activation in inflammatory injuries.  相似文献   
60.
As a source of agar, the red macroalga Gelidium floridanum is a seaweed of great economic importance. However, it grows in a region exposed to high ultraviolet B radiation (UVBR). Therefore, to study the in vitro effect of UVBR on this plant, apical segments of G. floridanum were cultivated and exposed to photosynthetically active radiation (PAR) at 80?μmol photons m?2?s?1 and PAR + UVBR at 1.6?W?m?2 at 3?h per day for 7?days. The samples were processed for electron microscopy, and agar yield, growth rates, mitochondrial activity, protein levels, chlorophyll a, phycobiliproteins, carotenoids and phenolic compounds, and photosynthetic performance were examined. After 7?days of exposure to PAR + UVBR, G. floridanum experienced ultrastructural damage that was primarily observed in the internal organization of chloroplasts, increased cell wall thickness, as well as increased volume of plastoglobuli and free ribosomes. Moreover, this exposure might have caused photodamage and photoinhibition of photosynthetic pigments (chlorophyll a and phycobiliproteins), leading to a decrease in photosynthetic efficiency, relative electron transport rate, and maximum photosynthetic rate. These phenomena were matched with a corresponding decrease in growth rates and depigmentation, combined with partial necrosis of the apical segments exposed to PAR + UVBR. Additionally, the UVBR-induced damage elicited a marked cellular antioxidant response, possibly as a consequence of free radical generation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号