首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   1篇
  2022年   2篇
  2020年   1篇
  2018年   1篇
  2017年   4篇
  2016年   6篇
  2015年   5篇
  2014年   7篇
  2013年   8篇
  2012年   9篇
  2011年   7篇
  2010年   4篇
  2008年   7篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  1997年   2篇
  1993年   1篇
  1988年   2篇
  1984年   1篇
  1973年   1篇
  1967年   4篇
  1966年   1篇
排序方式: 共有92条查询结果,搜索用时 31 毫秒
21.
Leucine accumulates in fluids and tissues of patients affected by maple syrup urine disease, an inherited metabolic disorder, predominantly characterized by neurological dysfunction. Although, a variable degree of cognition/psychomotor delay/mental retardation is found in a considerable number of individuals affected by this deficieny, the mechanisms underlying the neuropathology of these alterations are still not defined. Therefore, the aim of this study was to investigate the effect of acute intra-hippocampal leucine administration in the step-down test in rats. In addition, the leucine effects on the electrophysiological parameter, long-term potentiation generation, and on the activities of the respiratory chain were also investigated. Male Wistar rats were bilaterally administrated with leucine (80 nmol/hippocampus; 160 nmol/rat) or artificial cerebrospinal fluid (controls) into the hippocampus immediately post-training in the behavioral task. Twenty-four hours after training in the step-down test, the latency time was evaluated and afterwards animals were sacrificed for assessing the ex vivo biochemical measurements. Leucine-treated animals showed impairment in memory consolidation and a complete inhibition of long-term potentiation generation at supramaximal stimulation. In addition, a significant increment in complex IV activity was observed in hippocampus from leucine-administered rats. These data strongly indicate that leucine compromise memory consolidation, and that impairment of long-term potentiation generation and unbalance of the respiratory chain may be plausible mechanisms underlying the deleterious leucine effect on cognition.  相似文献   
22.
Abstract: The characteristics of adenosine and inosine outflow evoked by 5 min of ischemia-like conditions in vitro (superfusion with glucose-free Krebs solution gassed with 95% N2/5% CO2) were investigated on rat hippocampal slices. The viability of the slices after “ischemia” was evaluated by extracellular recording of the evoked synaptic responses in the CA1 region. The evoked dendritic field potentials were abolished after 5 min of superfusion under “ischemia” but a complete recovery occurred after 5 min of reperfusion with normal oxygenated Krebs solution. No recovery took place after 10 min of “ischemia.” The addition of the adenosine A, receptor antagonist 8-phenylthe- ophylline to the superfusate antagonized the depression of the evoked field potentials caused by 5 min of “ischemia.” Five minutes of “ischemia” brought about a six- and fivefold increase in adenosine and inosine outflow, respectively, within 10 min. Tetrodotoxin reduced the outflow of adenosine and inosine by 42 and 33%, respectively, whereas the removal of Ca2+ caused a further increase. The NMDA receptor antagonist d (-)-2-amino-7- phoshonoheptanoic acid and the non-NMDA antagonist 6,7-dinitroquinoxaline-2,3-dione brought about small, not statistically significant decreases of adenosine and inosine outflow. The glutamate uptake inhibitor dihydrokainate did not affect the outflow of adenosine and inosine. Inhibition of ecto-5′-nucleotidase by α, β-methylene ADP and GMP did not affect basal adenosine outflow but potentiated “ischemia”-evoked adenosine outflow. It is concluded that ischemia-like conditions in vitro evoke a Ca2+-independent adenosine and inosine outflow, through a mechanism that partly depends on propagated nervous activity but does not involve excitatory amino acids. The efflux of adenosine is probably responsible for the depression of the evoked synaptic electrical activity during “ischemia” in the hippocampal slices.  相似文献   
23.
The pathogenic mechanisms that underlie the progression of remote degeneration after spinal cord injury (SCI) are not fully understood. In this study, we examined the relationship between endoplasmic reticulum (ER) stress and macroautophagy, hereafter autophagy, and its contribution to the secondary damage and outcomes that are associated with remote degeneration after SCI. Using a rat model of spinal cord hemisection at the cervical level, we measured ER stress and autophagy markers in the axotomized neurons of the red nucleus (RN). In SCI animals, mRNA and protein levels of markers of ER stress, such as GRP78, CHOP, and GADD34, increased 1 day after the injury, peaking on Day 5. Notably, in SCI animals, the increase of ER stress markers correlated with a blockade in autophagic flux, as evidenced by the increase in microtubule-associated protein 2 light chain 3 (LC3-II) and p62/SQSTM1 (p62) and the decline in LAMP1 and LAMP2 levels. After injury, treatment with guanabenz protected neurons from UPR failure and increased lysosomes biogenesis, unblocking autophagic flux. These effects correlated with greater activation of TFEB and improved neuronal survival and functional recovery—effects that persisted after suspension of the treatment. Collectively, our results demonstrate that in remote secondary damage, impairments in autophagic flux are intertwined with ER stress, an association that contributes to the apoptotic cell death and functional damage that are observed after SCI.Subject terms: Cell death in the nervous system, Neurodegeneration, Molecular neuroscience  相似文献   
24.
25.

Background

We have previously demonstrated an association between increased sFRP3 expression and adverse outcome in a population of HF irrespective of cause and left ventricular ejection fraction. In this study we evaluated the prognostic value of sFRP3 in older patients with chronic systolic HF of ischemic origin.

Methods

We evaluated sFRP3, by tertiles, as a risk factor for the primary endpoint (cardiovascular [CV] mortality, nonfatal myocardial infarction, nonfatal stroke), all-cause mortality, CV mortality, death from worsening HF (WHF), any coronary event, including sudden death, as well as hospitalizations for CV causes and WHF in 1444 patients from the CORONA population, randomly assigned to 10 mg rosuvastatin or placebo.

Results

Kaplan-Meier curves for the primary endpoint, as well as all-cause- and CV mortality revealed a markedly better survival for patients with sFRP3 levels in the middle tertile of compared to the 1st and 3rd tertile. In multivariable Cox-regression, after full adjustment including high-sensitive CRP and NT-proBNP, a lower event rate for the primary end point, all cause and CV mortality was observed for patients with tertile 2 sFRP3 levels (HR 0.57 [0.44–0.74], 0.55 [0.44–0.74] and 0.52 [0.39–0.69]; p<0.001), as well as for the number of coronary events (HR 0.62 [0.47–0.82], p = 0.001) and sudden death (HR 0.55 [0.37–0.82], p = 0.002). Applying sFRP3 values to the fully adjusted regression model resulted in highly significant continuous net reclassification improvements for the primary endpoint, all cause and CV mortality, coronary events and sudden death (range 0.24–0.31; p≤0.002 for all).

Conclusions

Intermediate serum sFRP3 levels are associated with better survival and fewer CV events than low or high sFRP3 levels, independently of conventional risk factors, in older patients with chronic systolic HF of ischemic origin. Our study suggests that balanced Wnt activity might confer protective effects in a clinical HF setting.

Trial Registration

http://www.clinicaltrials.gov NCT00206310  相似文献   
26.
Background aimsBone marrow (BM)-derived cells appear to be a promising therapeutic source for the treatment of acute myocardial infarction (AMI). However, the quantity and quality of the cells to be used, along with the appropriate time of administration, still need to be defined. We thus investigated the use of BM CD34+-derived cells as cells suitable for a cell therapy protocol (CTP) in the treatment of experimental AMI.MethodsThe need for a large number of cells was satisfied by the use of a previously established protocol allowing the expansion of human CD34+ cells isolated from neonatal and adult hematopoietic tissues. We evaluated gene expression, endothelial differentiation potential and cytokine release by BM-derived cells during in vitro culture. Basal and expanded CD34+ cells were used as a delivery product in a murine AMI model consisting of a coronary artery ligation (CAL). Cardiac function recovery was evaluated after injecting basal or expanded cells.ResultsGene expression analysis of in vitro-expanded cells revealed that endothelial markers were up-regulated during culture. Moreover, expanded cells generated a CD14+ subpopulation able to differentiate efficiently into VE-cadherin-expressing cells. In vivo, we observed a cardiac function recovery in mice sequentially treated with basal and expanded cells injected 4 h and 7 days after CAL, respectively.ConclusionsOur data suggest that combining basal and expanded BM-derived CD34+ cells in a specific temporal pattern of administration might represent a promising strategy for a successful cell-based therapy.  相似文献   
27.
Ultraviolet-B radiation (UVBR) affects plants in many important ways, including reduction of growth rate and primary productivity, and changes in ultrastructures. Rice (Oryza sativa) is one of the most cultivated cereals in the world, along with corn and wheat, representing over 50 % of agricultural production. In this study, we examined O. sativa plants exposed to ambient outdoor radiation and laboratory-controlled photosynthetically active radiation (PAR) and PAR + UVBR conditions for 2 h/day during 30 days of cultivation. The samples were studied for morphological and ultrastructural characteristics, and physiological parameters. PAR + UVBR caused changes in the ultrastructure of leaf of O. sativa and leaf morphology (leaf index, leaf area and specific leaf area, trichomes, and papillae), plant biomass (dry and fresh weight), photosynthetic pigments, phenolic compounds, and protein content. As a photoprotective acclimation strategy against PAR + UVBR damage, an increase of 66.24 % in phenolic compounds was observed. Furthermore, PAR + UVBR treatment altering the levels of chlorophylls a and b, and total chlorophyll. In addition, total carotenoid contents decreased after PAR + UVBR treatment. The results strongly suggested that PAR + UVBR negatively affects the ultrastructure, morphology, photosynthetic pigments, and growth rates of leaf of O. sativa and, in the long term, it could affect the viability of this economically important plant.  相似文献   
28.
Recent studies have indicated a causal link between high dietary cholesterol intake and brain oxidative stress. In particular, we have previously shown a positive correlation between elevated plasma cholesterol levels, cortico-cerebral oxidative stress and mitochondrial dysfunction in low density lipoprotein receptor knockout (LDLr?/?) mice, a mouse model of familial hypercholesterolemia. Here we show that the organoselenium compound diphenyl diselenide (PhSe)2 (1 mg/kg; o.g., once a day for 30 days) significantly blunted the cortico-cerebral oxidative stress and mitochondrial dysfunction induced by a hypercholesterolemic diet in LDLr?/? mice. (PhSe)2 effectively prevented the inhibition of complex I and II activities, significantly increased the reduced glutathione (GSH) content and reduced lipoperoxidation in the cerebral cortex of hypercholesterolemic LDLr?/? mice. Overall, (PhSe)2 may be a promising molecule to protect against hypercholesterolemia-induced effects on the central nervous system, in addition to its already demonstrated antiatherogenic effects.  相似文献   
29.
To study the bystander effects, G(0) human peripheral blood lymphocytes were X-irradiated with 0.1, 0.5 and 3 Gy. After 24h, cell-free conditioned media from irradiated cultures were transferred to unexposed lymphocytes. Following 48 h of medium transfer, viability, induction of apoptosis, telomere shortening, reactive oxygen species (ROS) levels and micronuclei (after stimulation) were analyzed. A statistically significant decrement in cell viability, concomitant with the loss of mitochondrial membrane potential, telomere shortening, increases in hydrogen peroxide (H(2)O(2)) and superoxide anion (O(2)(-)) with depletion of intracellular glutathione (GSH) level, and higher frequencies of micronuclei, were observed in bystander lymphocytes incubated with medium from 0.5 and 3 Gy irradiated samples, compared to lymphocytes unexposed. Furthermore, no statistically significant difference between the response to 0.5 and 3 Gy of irradiation in bystander lymphocytes, was found. However, when lymphocytes were irradiated with 0.1 Gy, no bystander effect with regard to viability, apoptosis, telomere length, and micronuclei was observed, although a high production of ROS level persisted. Radiation in the presence of the radical scavenger dimethyl sulfoxide (DMSO) suppressed oxidative stress induced by 3 Gy of X-rays with the effective elimination of bystander effects, suggesting a correlation between ROS and bystander signal formation in irradiated cells. The data propose that bystander effect might be mostly due to the reactions of radiation induced free radicals on DNA, with the existence of a threshold at which the bystander signal is not operative (0.1 Gy dose of X-rays). Our results may have clinical implications for health risk associated with radiation exposure.  相似文献   
30.
Spinal cord injury (SCI) is a devastating condition of CNS that often results in severe functional impairments for which there are no restorative therapies. As in other CNS injuries, in addition to the effects that are related to the primary site of damage, these impairments are caused by degeneration of distal regions that are connected functionally to the primary lesion site. Modulation of the endocannabinoid system (ECS) counteracts this neurodegeneration, and pharmacological modulation of type-2 cannabinoid receptor (CB2R) is a promising therapeutic target for several CNS pathologies, including SCI. This study examined the effects of CB2R modulation on the fate of axotomized rubrospinal neurons (RSNs) and functional recovery in a model of spinal cord dorsal hemisection (SCH) at the cervical level in rats. SCH induced CB2R expression, severe atrophy, and cell death in contralateral RSNs. Furthermore, SCH affected molecular changes in the apoptotic cascade in RSNs – increased cytochrome c release, apoptosome formation, and caspase-3 activity. CB2R stimulation by its selective agonist JWH-015 significantly increased the bcl-2/bax ratio, reduced cytochrome c release, delayed atrophy and degeneration, and improved spontaneous functional recovery through ERK1/2 inactivation. These findings implicate the ECS, particularly CB2R, as part of the endogenous neuroprotective response that is triggered after SCI. Thus, CB2R modulation might represent a promising therapeutic target that lacks psychotropic effects and can be used to exploit ECS-based approaches to counteract neuronal degeneration.Spinal cord injury (SCI) is a devastating neurological disease that results in severe functional impairments for which there are no restorative therapies. In addition to the primary injury, functional impairments following SCI are attributed to degenerative events in regions that are remote but functionally connected to the primary lesion site – that is, supraspinal structures. These events include cell death and structural changes and are important predictors of outcome.1, 2 However, few studies have examined the molecular and biochemical changes in remote neurons after SCIs as targets for therapeutic interventions.The spinal cord hemisection (SCH) model is a sensitive and reliable paradigm that has been used to evaluate forelimb motor functions and changes in remote supraspinal areas that are functionally related to the primary site of injury.3 When performed at the cervical level, an SCH in rodents axotomizes nearly the entire contralateral neuronal population of the magnocellular component of the red nucleus and mimics Brown–Séquard syndrome in humans.3, 4The endocannabinoid system (ECS) is a ubiquitous lipid signaling system that has homeostatic functions and comprises two types of G protein-coupled receptors, CB1R and CB2R, their endogenous ligands (arachidonoyl ethanolamide or anandamide and 2-arachidonoylglycerol), and the enzymatic machinery responsible for their synthesis and degradation.5 In the brain, the ECS acts like a neurotransmitter system that governs neuronal excitability at various synapses, regulating such processes as pain, mood, appetite, memory, and motor activity.6, 7 Unlike classical neurotransmitters, endocannabinoids are not stored in vesicles but are produced on demand in response to various stimuli.6, 7The ECS is modulated by many neurological insults, such as cerebral ischemia,8 traumatic,9 and focal brain injury,10 and it is increasingly considered a promising therapeutic target in several CNS pathologies9, 10, 11, 12, 13 including SCI.14, 15, 16, 17After an incomplete SCI by concussion, the rapid postlesional activation of cannabinoid receptors that occurs is considered an endogenous protective mechanism.14 Simultaneous stimulation of CB1R and CB2R early before injury impedes expansion of the lesion and white matter at the epicenter of damage – effects that are maintained for up to 28 days after injury.15 This limited damage is also accompanied by greater recovery of locomotor function.16 These neuroprotective effects are prevented by simultaneous blockade of CB1R and CB2R but not of either receptor alone. In the same SCI model, Adhikary et al.17 demonstrated that a selective CB2R agonist significantly modulated immune responses at the lesion site and improved motor and autonomic functions. The potential of endocannabinoids to limit damage at the primary site has also been highlighted in many studies.8, 9, 14, 15, 16, 17 Recent reports have implicated the ECS in remote damage,10 but the function of the ECS in supraspinal structures after SCI has not been examined.In this study, we determined the effects of CB2R modulation on the fate of the axotomized rubrospinal neurons (RSNs) and on spontaneous functional recovery after SCH at the cervical level in rats. Beginning 7 days after damage, SCH induced severe atrophy and cell loss and upregulated CB2R in axotomized RSNs. Notably, neuronal degeneration proceeded concomitantly with molecular changes in the apoptotic cascade – that is, greater cytochrome c (cyt-c) release from damaged mitochondria, cyt-c/Apaf-1 binding, and caspase-3 activity. CB2R stimulation by its selective agonist JWH-015 (JWH) significantly increased the bcl-2/bax ratio, reduced cyt-c release, delayed atrophy and degeneration, and improved spontaneous functional recovery through ERK1/2 inactivation. Thus, CB2R modulation is a therapeutic target that might counteract the remote degeneration of supraspinal regions after SCI.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号