排序方式: 共有48条查询结果,搜索用时 15 毫秒
41.
42.
Marina Siponen Giuliano Sciara Manuela Villion Silvia Spinelli Julie Lichière Christian Cambillau Sylvain Moineau Valérie Campanacci 《Journal of bacteriology》2009,191(3):728-734
We report here the characterization of the nonstructural protein ORF12 of the virulent lactococcal phage p2, which belongs to the Siphoviridae family. ORF12 was produced as a soluble protein, which forms large oligomers (6- to 15-mers) in solution. Using anti-ORF12 antibodies, we have confirmed that ORF12 is not found in the virion structure but is detected in the second half of the lytic cycle, indicating that it is a late-expressed protein. The structure of ORF12, solved by single anomalous diffraction and refined at 2.9-Å resolution, revealed a previously unknown fold as well as the presence of a hydrophobic patch at its surface. Furthermore, crystal packing of ORF12 formed long spirals in which a hydrophobic, continuous crevice was identified. This crevice exhibited a repeated motif of aromatic residues, which coincided with the same repeated motif usually found in tape measure protein (TMP), predicted to form helices. A model of a complex between ORF12 and a repeated motif of the TMP of phage p2 (ORF14) was generated, in which the TMP helix fitted exquisitely in the crevice and the aromatic patches of ORF12. We suggest, therefore, that ORF12 might act as a chaperone for TMP hydrophobic repeats, maintaining TMP in solution during the tail assembly of the lactococcal siphophage p2.During industrial milk fermentation, Lactococcus lactis cells are added to transform milk into an array of fermented products such as cheese. However, this manufacturing process may be impaired by lytic phages present in the factory environment as well as in the milk itself (30). Due to the destructive effects of phage infections on bacterial fermentation, much effort has been undertaken to isolate and study the biodiversity of these bacteriophages. Lactococcal bacteriophages belong to at least 10 different genetically distinct species of double-stranded DNA viruses (9). Of them, three lactococcal phage species, all belonging to the Siphoviridae family, are the major source of problems in milk fermentation, namely, the 936, P335, and c2 species (7, 28, 29). Furthermore, members of the 936 species are by far responsible for the majority of infections (50 to 80%) (1, 24, 41). Numerous phages of the 936 species have been isolated, and several have been characterized at the genome level (25). However, little is known concerning their molecular mechanisms of infection, although we recently solved the structure of the receptor-binding protein (RBP) of our model 936-like phage, namely, the virulent phage p2 (38, 43), and of phages belonging to the P335 species (27, 34, 37, 38).As with all viruses, bacteriophage genomes are quite compact, leaving little room for noncoding sequences (4). In fact, phage genes are disposed in an operon-type organization (4), and the order of genes corresponds to the different phases of the infection cycle. Moreover, genes are often in clusters (referred to as modules), with gene products from adjacent genes generally found to interact with each other. Interestingly, phage genome organization, including individual gene order, is often conserved within a given species, particularly within the Siphoviridae family. In the case of L. lactis virulent phages belonging to the 936 or P335 species, this principle applies particularly to the morphogenesis gene module, which includes all the genes coding for the phage structural protein genes. For the tail assembly, a module comprises a set of genes between the portal protein, which is connecting the tail to the capsid, and the RBP, which is located at the tip of the tail and is involved in host recognition (39, 43).The characterization of tail assembly genes of lactococcal phages has been more extensive for temperate siphophages belonging to the P335 species (27, 34, 37, 38). Because of the similarities in genome organization, the findings in this phage species can, in some cases, be used as clues toward understanding the morphology of 936-like phages. For the temperate phage Tuc2009 (P335 species), all structural proteins required for tail and baseplate assembly have been identified (27, 34, 37, 38). Genes located between those coding for the tape measure protein (TMP) and BppL (RBP) were identified as corresponding to components of the baseplate structure, located at the tail distal end. Furthermore, a gene coding for the major tail protein (MTP) was also identified at a position upstream from tmp. Between the genes coding for the MTP and those coding for the TMP in Tuc2009 are two gene products identified as gpG and gpGT, which are not present in the phage particle. These two proteins were named based on their likely role analogous to the tail assembly proteins present in coliphage lambda, a model virus belonging to the Siphoviridae family (21, 27, 47). gpGT has an essential role in lambda tail assembly, acting prior to tail shaft assembly, while the role of gpG in tail assembly is not known (21). Both gpG and gpGT are also absent from mature lambda virions (21). It has been argued that they may act as assembly chaperones (47).A close examination of 936 genomes indicates the presence of two genes coding for gpG and gpGT-like proteins. Analysis of the phage p2 genome, closely related to that of lactococcal phage sk1 (6), revealed that the putative tail assembly proteins could correspond to gene products ORF12 and ORF13. These two genes are followed by the TMP gene corresponding to orf14, other genes coding for other structural proteins, and the RBP gene orf18. During our ongoing investigation of the structure of phage p2, we report here the cloning, expression, and crystal structure of ORF12 in order to decipher its role in the tail assembly process. 相似文献
43.
Jose EB de la Torre Mary G Egan Manpreet S Katari Eric D Brenner Dennis W Stevenson Gloria M Coruzzi Rob DeSalle 《BMC evolutionary biology》2006,6(1):48-15
Background
While Expressed Sequence Tags (ESTs) have proven a viable and efficient way to sample genomes, particularly those for which whole-genome sequencing is impractical, phylogenetic analysis using ESTs remains difficult. Sequencing errors and orthology determination are the major problems when using ESTs as a source of characters for systematics. Here we develop methods to incorporate EST sequence information in a simultaneous analysis framework to address controversial phylogenetic questions regarding the relationships among the major groups of seed plants. We use an automated, phylogenetically derived approach to orthology determination called OrthologID generate a phylogeny based on 43 process partitions, many of which are derived from ESTs, and examine several measures of support to assess the utility of EST data for phylogenies. 相似文献44.
45.
Measurement of molecular diffusion in solution by multiphoton fluorescence photobleaching recovery 总被引:5,自引:2,他引:5
下载免费PDF全文

Multiphoton fluorescence photobleaching recovery (MP-FPR) is a technique for measuring the three-dimensional (3D) mobility of fluorescent molecules with 3D spatial resolution of a few microns. A brief, intense flash of mode-locked laser light pulses excites fluorescent molecules via multiphoton excitation in an ellipsoidal focal volume and photobleaches a fraction. Because multiphoton excitation of fluorophores is intrinsically confined to the high-intensity focal volume of the illuminating beam, the bleached region is restricted to a known, three-dimensionally defined volume. Fluorescence in this focal volume is measured with multiphoton excitation, using the attenuated laser beam to measure fluorescence recovery as fresh unbleached dye diffuses in. The time course of the fluorescence recovery signal after photobleaching can be analyzed to determine the diffusion coefficient of the fluorescent species. The mathematical formulas used to fit MP-FPR recovery curves and the techniques needed to properly utilize them to acquire the diffusion coefficients of fluorescently labeled molecules within cells are presented here. MP-FPR is demonstrated on calcein in RBL-2H3 cells, using an anomalous subdiffusion model, as well as in aqueous solutions of wild-type green fluorescent protein, yielding a diffusion coefficient of 8.7 x 10(-7) cm(2)s(-1) in excellent agreement with the results of other techniques. 相似文献
46.
EB Adamah-Biassi Y Zhang H Jung S Vissapragada RJ Miller ML Dubocovich 《The journal of histochemistry and cytochemistry》2014,62(1):70-84
The pineal hormone melatonin activates two G-protein coupled receptors (MT1 and MT2) to regulate in part biological functions. The MT1 and MT2 melatonin receptors are heterogeneously distributed in the mammalian brain including humans. In the mouse, only a few reports have assessed the expression of the MT1 melatonin receptor expression using 2-iodomelatonin binding, in situ hybridization and/or polymerase chain reaction (PCR). Here, we described a transgenic mouse in which red fluorescence protein (RFP) is expressed under the control of the endogenous MT1 promoter, by inserting RFP cDNA at the start codon of MTNR1a gene within a bacterial artificial chromosome (BAC) and expressing this construct as a transgene. The expression of RFP in the brain of this mouse was examined either directly under a fluorescent microscope or immunohistochemically using an antibody against RFP (RFP-MT1). RFP-MT1 expression was observed in many brain regions including the subcommissural organ, parts of the ependyma lining the lateral and third ventricles, the aqueduct, the hippocampus, the cerebellum, the pars tuberalis, the habenula and the habenula commissure. This RFP-MT1 transgenic model provides a unique tool for studying the distribution of the MT1 receptor in the brain of mice, its cell-specific expression and its function in vivo. 相似文献
47.
48.
Bethel CM Sciara EB Estill JC Bowers JE Hanna W Paterson AH 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》2006,112(4):727-737
This study describes the first detailed linkage maps of two bermudagrass species, Cynodon dactylon (T89) and Cynodon transvaalensis (T574), based on single-dose restriction fragments (SDRFs). The mapping population consisted of 113 F1 progeny of a cross
between the two parents. Loci were generated using 179 bermudagrass genomic clones and 50 heterologous cDNAs from Pennisetum and rice. The map of T89 is based on 155 SDRFs and 17 double-dose restriction fragments on 35 linkage groups, with an average
marker spacing of 15.3 cM. The map of T574 is based on 77 SDRF loci on 18 linkage groups with an average marker spacing of
16.5 cM. About 16 T89 linkage groups were arranged into four complete and eight into four incomplete homologous sets, while
15 T574 linkage groups were arranged into seven complete homologous sets, all on the basis of multi-locus probes and repulsion
linkages. Eleven T89 and three T574 linkage groups remain unassigned. In each parent consensus maps were built based on alignments
of homologous linkage groups. Four ancestral chromosomes were inferred after aligning T89 and T574 parental consensus maps
using multi-locus probes. The inferred ancestral marker orders were used in comparisons to a detailed Sorghum linkage map using 40 common probes, and to the rice genome sequence using 98 significant BLAST hits, to find regions of colinearity.
Using these maps we have estimated the recombinational length of the T89 and T574 genomes at 3,012 and 1,569 cM, respectively,
which are 61 and 62% covered by our maps.
Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users. 相似文献