首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2260篇
  免费   265篇
  2525篇
  2022年   19篇
  2021年   25篇
  2019年   18篇
  2018年   30篇
  2017年   22篇
  2016年   40篇
  2015年   74篇
  2014年   80篇
  2013年   86篇
  2012年   119篇
  2011年   99篇
  2010年   80篇
  2009年   59篇
  2008年   127篇
  2007年   118篇
  2006年   103篇
  2005年   87篇
  2004年   80篇
  2003年   89篇
  2002年   63篇
  2001年   73篇
  2000年   87篇
  1999年   73篇
  1998年   33篇
  1997年   22篇
  1996年   17篇
  1995年   19篇
  1994年   22篇
  1993年   18篇
  1992年   57篇
  1991年   33篇
  1990年   35篇
  1989年   34篇
  1988年   38篇
  1987年   34篇
  1986年   35篇
  1985年   34篇
  1984年   20篇
  1983年   28篇
  1981年   17篇
  1980年   24篇
  1979年   33篇
  1978年   17篇
  1977年   17篇
  1976年   17篇
  1975年   17篇
  1974年   32篇
  1970年   16篇
  1969年   16篇
  1968年   18篇
排序方式: 共有2525条查询结果,搜索用时 15 毫秒
111.
The tomato Tm-22 gene was considered to be one of the most durable resistance genes in agriculture, protecting against viruses of the Tobamovirus genus, such as tomato mosaic virus (ToMV) and tobacco mosaic virus (TMV). However, an emerging tobamovirus, tomato brown rugose fruit virus (ToBRFV), has overcome Tm-22, damaging tomato production worldwide. Tm-22 encodes a nucleotide-binding leucine-rich repeat (NLR) class immune receptor that recognizes its effector, the tobamovirus movement protein (MP). Previously, we found that ToBRFV MP (MPToBRFV) enabled the virus to overcome Tm-22-mediated resistance. Yet, it was unknown how Tm-22 remained durable against other tobamoviruses, such as TMV and ToMV, for over 60 years. Here, we show that a conserved cysteine (C68) in the MP of TMV (MPTMV) plays a dual role in Tm-22 activation and viral movement. Substitution of MPToBRFV amino acid H67 with the corresponding amino acid in MPTMV (C68) activated Tm-22-mediated resistance. However, replacement of C68 in TMV and ToMV disabled the infectivity of both viruses. Phylogenetic and structural prediction analysis revealed that C68 is conserved among all Solanaceae-infecting tobamoviruses except ToBRFV and localizes to a predicted jelly-roll fold common to various MPs. Cell-to-cell and subcellular movement analysis showed that C68 is required for the movement of TMV by regulating the MP interaction with the endoplasmic reticulum and targeting it to plasmodesmata. The dual role of C68 in viral movement and Tm-22 immune activation could explain how TMV was unable to overcome this resistance for such a long period.  相似文献   
112.
Natriuretic peptides (NP), including atrial natriuretic peptide (ANP), induce potent natriuresis and vasodilation and thereby generate hypotension in vivo. Despite intensive efforts, clinical application of NP as an antihypertensive agent is limited because of their short biological half-life and poor bioavailability. Recently, we have developed a strategy that facilitates slow release of peptides from PEG-peptide inactive conjugates, based on reversible pegylation. Peptides prepared by this approach undergo slow, spontaneous chemical hydrolysis at physiological conditions, releasing the native active peptide/protein drug from the inactive conjugates over prolonged periods. A PEG chain of 30 kDa was linked covalently to the alpha-amino side chain of the hormone via a MAL-Fmoc-NHS spacer, yielding PEG 30-Fmoc-ANP, a prodrug that releases the native hormone upon incubation at physiological conditions. Bolus administration of native ANP to Wistar rats receiving adrenaline yields a short, transitory effect in lowering blood pressure (BP), reaching a maximum at 2 min, and then returning to control values after 12 to 25 min. In contrast, administration of PEG 30-Fmoc-ANP lowered BP following a lag period of 50 min, and maintained low BP for a period exceeding 60 min. Saline or PEG 30-Fmoc-Alanine were not effective in lowering BP in Wistar rats. These results show that the novel compound, PEG 30-Fmoc-ANP, is a reversible pegylated prodrug derivative that facilitates a prolonged BP lowering effect in rats and may be considered as a candidate for development into an antihypertensive drug.  相似文献   
113.
GDP- and UDP-deoxyglucose inhibit the incorporation of glucose from UDP-glucose into dolichyl phosphate glucose and dolichyl pyrophosphate oligosaccharides. GDP-deoxyglucose inhibits by competing with the physiological nucleotide sugars for dolichyl phosphate, and dolichyl phosphate deoxyglucose is formed. This inhibition is reversed by excess of dolichyl phosphate. UDP-deoxyglucose does not give rise to a lipid-linked derivative, and inhibition by this analog is not reversed by dolichyl phosphate. The UDP- and GDP-derivatives of deoxyglucose inhibit the incorporation of glucose into glucose-containing glycoproteins. This effect seems to be the result of the inhibition of lipid intermediates glucosylation and is comparable to the effect produced by coumarin. Cellulose synthetase activity is not affected by UDP- or GDP-deoxyglucose. On the other hand, deoxyglucose inhibits the formation of β-1,4-glucans in vivo.  相似文献   
114.
Here we present a model for maltodextrin translocation through maltoporin channels. In a first step, our theoretical analysis does consider the case of a single binding site for a given substrate in a structurally unaffected channel with a possibly different entrance barrier on either side. It is shown how by means of conventional electrical conductance measurements (including current noise analysis) the basic equilibrium and rate constants can be determined as functions of the applied voltage. Then also the net translocation rate of the substrate becomes accessible quantitatively. This most simple model mechanism has been extended to include a voltage-dependent fast conformational change of the channel that prevents the binding process. The so developed approach has been tested with experimental data for a single maltoporin trimer being reconstituted in black lipid membranes when studied in the presence of maltohexaose as the substrate. The experimental results turned out to be clearly incompatible with binding alone. They are, however, very satisfactorily fitted by pertinent theoretical curves if also inhibition of binding by a conformational transition is taken into account. Accordingly, quantitative evaluations of the underlying parameters and eventually of the translocation rate have been carried out successfully. Our analysis reveals a set of parameters necessary for an optimal translocation that nicely corresponds to natural conditions.  相似文献   
115.
S chwarz , S., W egener , H. & B lobel , H. 1990. Plasmid-encoded resistance to macrolides and lincosamides in Staphylococcus hyicus. Journal of Applied Bacteriology 69 , 845–849.
A small plasmid of 2–35 kb, isolated from a porcine Staphylococcus fcyicus-culture, was found to be responsible for constitutive resistance to macrolide/lincosamide antibiotics. This plasmid-encoded property could be established by interspecific transformation experiments. The plasmid from porcine Staph. hyicus was designated as pSE2. It differed on the basis of its restriction map from the macrolid/lincosamid resistance (MLR-)-plasmids of other staphylococcal species from infections of humans. Furthermore, the pSE2 plasmid encoded two proteins of approximately 20.5 and 30 kDa.  相似文献   
116.
Asymmetry in the assembly of the RNAi enzyme complex   总被引:120,自引:0,他引:120  
Schwarz DS  Hutvágner G  Du T  Xu Z  Aronin N  Zamore PD 《Cell》2003,115(2):199-208
A key step in RNA interference (RNAi) is assembly of the RISC, the protein-siRNA complex that mediates target RNA cleavage. Here, we show that the two strands of an siRNA duplex are not equally eligible for assembly into RISC. Rather, both the absolute and relative stabilities of the base pairs at the 5' ends of the two siRNA strands determine the degree to which each strand participates in the RNAi pathway. siRNA duplexes can be functionally asymmetric, with only one of the two strands able to trigger RNAi. Asymmetry is the hallmark of a related class of small, single-stranded, noncoding RNAs, microRNAs (miRNAs). We suggest that single-stranded miRNAs are initially generated as siRNA-like duplexes whose structures predestine one strand to enter the RISC and the other strand to be destroyed. Thus, the common step of RISC assembly is an unexpected source of asymmetry for both siRNA function and miRNA biogenesis.  相似文献   
117.
Signaling through the Wnt/β-catenin pathway is a crucial determinant of hepatic zonal gene expression, liver development, regeneration, and tumorigenesis. Transgenic mice with hepatocyte-specific knockout of Ctnnb1 (encoding β-catenin) have proven their usefulness in elucidating these processes. We now found that a small number of hepatocytes escape the Cre-mediated gene knockout in that mouse model. The remaining β-catenin-positive hepatocytes showed approximately 25% higher cell volumes compared to the β-catenin-negative cells and exhibited a marker protein expression profile similar to that of normal perivenous hepatocytes or hepatoma cells with mutationally activated β-catenin. Surprisingly, the expression pattern was observed independent of the cell's position within the liver lobule, suggesting a malfunction of physiological periportal repression of perivenously expressed genes in β-catenin-deficient liver. Clusters of β-catenin-expressing hepatocytes lacked expression of the gap junction proteins Connexin 26 and 32. Nonetheless, β-catenin-positive hepatocytes had no striking proliferative advantage, but started to grow out on treatment with phenobarbital, a tumor-promoting agent known to facilitate the formation of mouse liver adenoma with activating mutations of Ctnnb1. Progressive re-population of Ctnnb1 knockout livers with wild-type hepatocytes was seen in aged mice with a pre-cirrhotic phenotype. In these large clusters of β-catenin-expressing hepatocytes, perivenous-specific gene expression was re-established. In summary, our data demonstrate that the zone-specificity of a hepatocyte's gene expression profile is dependent on the presence of β-catenin, and that β-catenin provides a proliferative advantage to hepatocytes when promoted with phenobarbital, or in a pre-cirrhotic environment.  相似文献   
118.
Population structure was investigated in Reticulitermes speratus populations in the Korean Peninsula and the Japanese Archipelago. All trees derived from analyses of the combined sequence dataset of two mitochondrial genes, COII and COIII, showed that R. speratus populations cluster into two major clades comprising the Korean/southern Japanese populations and the north-ern Japanese populations. Analysis of population ge-netic structure showed strong genetic partitioning between populations of the two clades. To understand historical migration routes and current distributions, the phylogeographic history of R. speratus was inferred from intra-/interspecific phylogeny and diver-gence times estimated between the clades of the phylogenetic tree. The estimated migration route and divergence time of ancestral R. speratus are congruent with recent paleogeographic hypotheses involving land-bridge connections between the Asian continent and the Japanese Archipelago. We suggest that ancestral R. speratus separated into northern and southern Japanese populations after its migration into the Japanese main islands from East China during the early Pleistocene via the East China Sea basin, which may have been exposed during that period. The Korean populations seem to have diverged recently from southern Japanese populations; this may explain the current distribution of R. speratus in the Japanese Arachipelago, and account for why it is restricted to northern areas of the Tokara Strait.  相似文献   
119.
120.
The mob genes of several bacteria have been implicated in the conversion of molybdopterin to molybdopterin guanine dinucleotide. The mob locus of Rhodobacter sphaeroides WS8 comprises three genes, mobABC. Chromosomal in-frame deletions in each of the mob genes have been constructed. The mobA mutant strain has inactive DMSO reductase and periplasmic nitrate reductase activities (both molybdopterin guanine dinucleotide-requiring enzymes), but the activity of xanthine dehydrogenase, a molybdopterin enzyme, is unaffected. The inability of a mobA mutant to synthesise molybdopterin guanine dinucleotide is confirmed by analysis of cell extracts of the mobA strain for molybdenum cofactor forms following iodine oxidation. Mutations in mobB and mobC are not impaired for molybdoenzyme activities and accumulate wild-type levels of molybdopterin and molybdopterin guanine dinucleotide, indicating they are not compromised in molybdenum cofactor synthesis. In the mobA mutant strain, the inactive DMSO reductase is found in the periplasm, suggesting that molybdenum cofactor insertion is not necessarily a pre-requisite for export.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号