首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   38篇
  国内免费   1篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2017年   2篇
  2016年   5篇
  2015年   7篇
  2014年   13篇
  2013年   11篇
  2012年   14篇
  2011年   33篇
  2010年   24篇
  2009年   11篇
  2008年   18篇
  2007年   27篇
  2006年   19篇
  2005年   24篇
  2004年   23篇
  2003年   18篇
  2002年   19篇
  2001年   3篇
  2000年   6篇
  1999年   8篇
  1998年   8篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1992年   8篇
  1991年   2篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1984年   7篇
  1983年   4篇
  1982年   3篇
  1981年   6篇
  1980年   6篇
  1979年   3篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1975年   7篇
  1973年   7篇
  1972年   3篇
  1971年   1篇
  1969年   3篇
  1968年   2篇
  1967年   1篇
排序方式: 共有411条查询结果,搜索用时 296 毫秒
11.
12.
We present a comprehensive characterization of the nucleoside N-ribohydrolase (NRH) family in two model plants, Physcomitrella patens (PpNRH) and maize (Zea mays; ZmNRH), using in vitro and in planta approaches. We identified two NRH subclasses in the plant kingdom; one preferentially targets the purine ribosides inosine and xanthosine, while the other is more active toward uridine and xanthosine. Both subclasses can hydrolyze plant hormones such as cytokinin ribosides. We also solved the crystal structures of two purine NRHs, PpNRH1 and ZmNRH3. Structural analyses, site-directed mutagenesis experiments, and phylogenetic studies were conducted to identify the residues responsible for the observed differences in substrate specificity between the NRH isoforms. The presence of a tyrosine at position 249 (PpNRH1 numbering) confers high hydrolase activity for purine ribosides, while an aspartate residue in this position confers high activity for uridine. Bud formation is delayed by knocking out single NRH genes in P. patens, and under conditions of nitrogen shortage, PpNRH1-deficient plants cannot salvage adenosine-bound nitrogen. All PpNRH knockout plants display elevated levels of certain purine and pyrimidine ribosides and cytokinins that reflect the substrate preferences of the knocked out enzymes. NRH enzymes thus have functions in cytokinin conversion and activation as well as in purine and pyrimidine metabolism.Nucleoside hydrolases or nucleoside N-ribohydrolases (NRHs; EC 3.2.2.-) are glycosidases that catalyze the cleavage of the N-glycosidic bond in nucleosides to enable the recycling of the nucleobases and Rib (Fig. 1A). The process by which nucleosides and nucleobases are recycled is also known as salvaging and is a way of conserving energy, which would otherwise be needed for the de novo synthesis of purine- and pyrimidine-containing compounds. During the salvage, bases and nucleosides can be converted into nucleoside monophosphates by the action of phosphoribosyltransferases and nucleoside kinases, respectively, and further phosphorylated into nucleoside diphosphates and triphosphates (Moffatt et al., 2002; Zrenner et al., 2006; Fig. 1B). Uridine kinase and uracil phosphoribosyl transferase are key enzymes in the pyrimidine-salvaging pathway in plants (Mainguet et al., 2009; Chen and Thelen, 2011). Adenine phosphoribosyltransferase and adenosine kinase (ADK) are important in purine salvaging (Moffatt and Somerville, 1988; Moffatt et al., 2002), and their mutants cause reductions in fertility or sterility, changes in transmethylation, and the formation of abnormal cell walls. In addition, both enzymes were also reported to play roles in cytokinin metabolism (Moffatt et al., 1991, 2000; von Schwartzenberg et al., 1998; Schoor et al., 2011). Cytokinins (N6-substituted adenine derivatives) are plant hormones that regulate cell division and numerous developmental events (Mok and Mok, 2001; Sakakibara, 2006). Cytokinin ribosides are considered to be transport forms and have little or no activity.Open in a separate windowFigure 1.A, Scheme of the reactions catalyzed by plant NRHs when using purine (inosine), pyrimidine (uridine), and cytokinin (iPR) ribosides as the substrates. B, Simplified schematic overview of cytokinin, purine, and pyrimidine metabolism in plants. The diagram is adapted from the work of Stasolla et al. (2003) and Zrenner et al. (2006) with modifications. The metabolic components shown are as follows: 1, cytokinin nucleotide phosphoribohydrolase; 2, adenine phosphoribosyltransferase; 3, adenosine kinase; 4, 5′-nucleotidase; 5, adenosine phosphorylase; 6, purine/pyrimidine nucleoside ribohydrolase; 7, cytokinin oxidase/dehydrogenase; 8, AMP deaminase; 9, hypoxanthine phosphoribosyltransferase; 10, inosine kinase; 11, inosine-guanosine phosphorylase; 12, IMP dehydrogenase; 13, xanthine dehydrogenase; 14, 5′-nucleotidase; 15, GMP synthase; 16, hypoxanthine-guanine phosphoribosyltransferase; 17, guanosine deaminase; 18, guanine deaminase; 19, guanosine kinase; 20, uracil phosphoribosyltransferase; 21, uridine cytidine kinase; 22, pyrimidine 5′-nucleotidase; 23, cytidine deaminase; 24, adenosine/adenine deaminase. CK, Cytokinin; CKR, cytokinin riboside; CKRMP, cytokinin riboside monophosphate.NRHs are metalloproteins first identified and characterized in parasitic protozoa such as Trypanosoma, Crithidia, and Leishmania species that rely on the import and salvage of nucleotide derivatives. They have since been characterized in other organisms such as bacteria, yeast, and insects (Versées and Steyaert, 2003) but never in mammals (Parkin et al., 1991). They have been divided into four classes based on their substrate specificity: nonspecific NRHs, which hydrolyze inosine and uridine (IU-NRHs; Parkin et al., 1991; Shi et al., 1999); purine-specific inosine/adenosine/guanosine NRHs (Parkin, 1996); the 6-oxopurine-specific guanosine/inosine NRHs (Estupiñán and Schramm, 1994); and the pyrimidine nucleoside-specific cytidine/uridine NRHs (CU-NRHs; Giabbai and Degano, 2004). All NRHs exhibit a stringent specificity for the Rib moiety and differ in their preferences regarding the nature of the nucleobase. Crystal structures are available for empty NRH or in complex with inhibitors from Crithidia fasciculata (CfNRH; Degano et al., 1998), Leishmania major (LmNRH; Shi et al., 1999), and Trypanosoma vivax (TvNRH; Versées et al., 2001, 2002). The structures of two CU-NRHs from Escherichia coli, namely YeiK (Iovane et al., 2008) and YbeK (rihA; Muzzolini et al., 2006; Garau et al., 2010), are also available. NRHs are believed to catalyze N-glycosidic bond cleavage by a direct displacement mechanism. An Asp from a conserved motif acts as a general base and abstracts a proton from a catalytic water molecule, which then attacks the C1′ atom of the Rib moiety of the nucleoside. Kinetic isotope-effect studies on CfNRH (Horenstein et al., 1991) showed that the substrate’s hydrolysis proceeds via an oxocarbenium ion-like transition state and is preceded by protonation at the N7 atom of the purine ring, which lowers the electron density on the purine ring and destabilizes the N-glycosidic bond. A conserved active-site His is a likely candidate for this role in IU-NRHs and CU-NRHs. In the transition state, the C1′-N9 glycosidic bond is almost 2 Å long, with the C1′ atom being sp2 hybridized while the C3′ atom adopts an exo-conformation, and the whole ribosyl moiety carries a substantial positive charge (Horenstein et al., 1991).Several NRH enzymes have been identified in plants, including a uridine-specific NRH from mung bean (Phaseolus radiatus; Achar and Vaidyanathan, 1967), an inosine-specific NRH (EC 3.2.2.2) and a guanosine-inosine-specific NRH, both from yellow lupine (Lupinus luteus; Guranowski, 1982; Szuwart et al., 2006), and an adenosine-specific NRH (EC 3.2.2.7) from coffee (Coffea arabica), barley (Hordeum vulgare), and wheat (Triticum aestivum; Guranowski and Schneider, 1977; Chen and Kristopeit, 1981; Campos et al., 2005). However, their amino acid sequences have not been reported so far. A detailed study of the NRH gene family from Arabidopsis (Arabidopsis thaliana) has recently been reported (Jung et al., 2009, 2011). The AtNRH1 enzyme exhibits highest hydrolase activity toward uridine and xanthosine. It can also hydrolyze the cytokinin riboside N6-(2-isopentenyl)adenosine (iPR), which suggests that it may also play a role in cytokinin homeostasis. However, Riegler et al. (2011) analyzed the phenotypes of homozygous nrh1 and nrh2 single mutants along with the homozygous double mutants and concluded that AtNRHs are probably unimportant in cytokinin metabolism.Here, we identify and characterize plant IU-NRHs from two different model organisms, Physcomitrella patens and maize (Zea mays), combining structural, enzymatic, and in planta functional approaches. The moss P. patens was chosen to represent the bryophytes, which can be regarded as being evolutionarily basal terrestrial plants, and is suitable for use in developmental and metabolic studies (Cove et al., 2006; von Schwartzenberg, 2009), while maize is an important model system for cereal crops. We report the crystal structures of NRH enzymes from the two plant species, PpNRH1 and ZmNRH3. Based on these structures, we performed site-directed mutagenesis experiments and kinetic analyses of point mutants of PpNRH1 in order to identify key residues involved in nucleobase interactions and catalysis. To analyze the physiological role of the PpNRHs, single knockout mutants were generated. NRH deficiency caused significant changes in the levels of purine, pyrimidine, and cytokinin metabolites relative to those seen in the wild type, illustrating the importance of these enzymes in nucleoside and cytokinin metabolism.  相似文献   
13.
Ca2+ influx by store-operated Ca2+ channels (SOCs) mediates all Ca2+-dependent cell functions, but excess Ca2+ influx is highly toxic. The molecular components of SOC are the pore-forming Orai1 channel and the endoplasmic reticulum Ca2+ sensor STIM1. Slow Ca2+-dependent inactivation (SCDI) of Orai1 guards against cell damage, but its molecular mechanism is unknown. Here, we used homology modeling to identify a conserved STIM1(448–530) C-terminal inhibitory domain (CTID), whose deletion resulted in spontaneous clustering of STIM1 and full activation of Orai1 in the absence of store depletion. CTID regulated SCDI by determining access to and interaction of the STIM1 inhibitor SARAF with STIM1 Orai1 activation region (SOAR), the STIM1 domain that activates Orai1. CTID had two lobes, STIM1(448–490) and STIM1(490–530), with distinct roles in mediating access of SARAF to SOAR. The STIM1(448–490) lobe restricted, whereas the STIM1(490–530) lobe directed, SARAF to SOAR. The two lobes cooperated to determine the features of SCDI. These findings highlight the central role of STIM1 in SCDI and provide a molecular mechanism for SCDI of Orai1.  相似文献   
14.
15.
Zipper interacting protein kinase (ZIPK, also known as death-associated protein kinase 3 [DAPK3]) is a Ser/Thr kinase that functions in programmed cell death. Since its identification eight years ago, contradictory findings regarding its intracellular localization and molecular mode of action have been reported, which may be attributed to unpredicted differences among the human and rodent orthologs. By aligning the sequences of all available ZIPK orthologs, from fish to human, we discovered that rat and mouse sequences are more diverged from the human ortholog relative to other, more distant, vertebrates. To test experimentally the outcome of this sequence divergence, we compared rat ZIPK to human ZIPK in the same cellular settings. We found that while ectopically expressed human ZIPK localized to the cytoplasm and induced membrane blebbing, rat ZIPK localized exclusively within nuclei, mainly to promyelocytic leukemia oncogenic bodies, and induced significantly lower levels of membrane blebbing. Among the unique murine (rat and mouse) sequence features, we found that a highly conserved phosphorylation site, previously shown to have an effect on the cellular localization of human ZIPK, is absent in murines but not in earlier diverging organisms. Recreating this phosphorylation site in rat ZIPK led to a significant reduction in its promyelocytic leukemia oncogenic body localization, yet did not confer full cytoplasmic localization. Additionally, we found that while rat ZIPK interacts with PAR-4 (also known as PAWR) very efficiently, human ZIPK fails to do so. This interaction has clear functional implications, as coexpression of PAR-4 with rat ZIPK caused nuclear to cytoplasm translocation and induced strong membrane blebbing, thus providing the murine protein a possible adaptive mechanism to compensate for its sequence divergence. We have also cloned zebrafish ZIPK and found that, like the human and unlike the murine orthologs, it localizes to the cytoplasm, and fails to bind the highly conserved PAR-4 protein. This further supports the hypothesis that murine ZIPK underwent specific divergence from a conserved consensus. In conclusion, we present a case of species-specific divergence occurring in a specific branch of the evolutionary tree, accompanied by the acquisition of a unique protein–protein interaction that enables conservation of cellular function.  相似文献   
16.
Trials in the 1990s demonstrated that medical therapy is as effective as invasive therapies for treating single-vessel coronary disease. Yet more recent studies enrolling patients with this condition have focused on evaluating only invasive approaches, namely, stenting versus coronary artery bypass surgery. Several ethical and scientific questions remain unanswered regarding the conduct of these later trials. Were they justified? Why wasn't a medical therapy arm included? Were subjects informed about the availability of medical therapy as an equivalent option? Was optimized medical therapy given prior to randomization? The absence of clear answers to these questions raises the possibility of serious bias in favor of invasive interventions. Considering that medical therapy is underutilized in patients with coronary disease, efforts should focus more on increasing utilization of medical therapy and proper selection of noninvasive interventions.  相似文献   
17.
The most common form of Ca(2+) signaling by Gq-coupled receptors entails activation of PLCbeta2 by Galphaq to generate IP(3) and evoke Ca(2+) release from the ER. Another form of Ca(2+) signaling by G protein-coupled receptors involves activation of Gi to release Gbetagamma, which activates PLCbeta1. Whether Gbetagamma has additional roles in Ca(2+) signaling is unknown. Introduction of Gbetagamma into cells activated Ca(2+) release from the IP(3) Ca(2+) pool and Ca(2) oscillations. This can be due to activation of PLCbeta1 or direct activation of the IP(3)R by Gbetagamma. We report here that Gbetagamma potently activates the IP(3) receptor. Thus, Gbetagamma-triggered [Ca(2+)](i) oscillations are not affected by inhibition of PLCbeta. Coimmunoprecipitation and competition experiments with Gbetagamma scavengers suggest binding of Gbetagamma to IP(3) receptors. Furthermore, Gbetagamma inhibited IP(3) binding to IP(3) receptors. Notably, Gbetagamma activated single IP(3)R channels in native ER as effectively as IP(3). The physiological significance of this form of signaling is demonstrated by the reciprocal sensitivity of Ca(2+) signals evoked by Gi- and Gq-coupled receptors to Gbetagamma scavenging and PLCbeta inhibition. We propose that gating of IP(3)R by Gbetagamma is a new mode of Ca(2+) signaling with particular significance for Gi-coupled receptors.  相似文献   
18.
Cystic fibrosis transmembrane conductance regulator (CFTR) regulates both HCO(3)(-) secretion and HCO(3)(-) salvage in secretory epithelia. At least two luminal transporters mediate HCO(3)(-) salvage, the Na(+)/H(+) exchanger (NHE3) and the Na(+)-HCO(3)(-) cotransport (NBC3). In a previous work, we show that CFTR interacts with NHE3 to regulate its activity (Ahn, W., Kim, K. W., Lee, J. A., Kim, J. Y., Choi, J. Y., Moe, O. M., Milgram, S. L., Muallem, S., and Lee, M. G. (2001) J. Biol. Chem. 276, 17236-17243). In this work, we report that transient or stable expression of human NBC3 (hNBC3) in HEK cells resulted in a Na(+)-dependent, DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid)- and 5-ethylisopropylamiloride-insensitive HCO(3)(-) transport. Stimulation of CFTR with forskolin markedly inhibited NBC3 activity. This inhibition was prevented by the inhibition of protein kinase A. NBC3 and CFTR could be reciprocally coimmunoprecipitated from transfected HEK cells and from the native pancreas and submandibular and parotid glands. Precipitation of NBC3 or CFTR from transfected HEK293 cells and from the pancreas and submandibular gland also coimmunoprecipitated EBP50. Glutathione S-transferase-EBP50 pulled down CFTR and hNBC3 from cell lysates when expressed individually and as a complex when expressed together. Notably, the deletion of the C-terminal PDZ binding motifs of CFTR or hNBC3 prevented coimmunoprecipitation of the proteins and inhibition of hNBC3 activity by CFTR. We conclude that CFTR and NBC3 reside in the same HCO(3)(-)-transporting complex with the aid of PDZ domain-containing scaffolds, and this interaction is essential for regulation of NBC3 activity by CFTR. Furthermore, these findings add additional evidence for the suggestion that CFTR regulates the overall trans-cellular HCO(3)(-) transport by regulating the activity of all luminal HCO(3)(-) secretion and salvage mechanisms of secretory epithelial cells.  相似文献   
19.
The different physiological roles of interleukin-1alpha (IL-1alpha) and interleukin-1beta (IL-1beta) are not well understood, especially when considering the apparent overlap and redundancy of the two IL-1 molecules. Characterization of IL-1alpha and IL-1beta expression was performed in this study in organs from young and old mice, using immunohistochemistry and ELISA (enzyme-linked immunosorbent assay). The results indicate that organ IL-1alpha and IL-1beta display different patterns of expression: IL-1alpha is manifested more prominently in lymphoreticular organs (lungs, small intestine, spleen, liver), while IL-1beta is more evident in highly specialized and more vulnerable organs, which do not play a leading role in defense against infections and intoxication (heart, brain, skeletal muscle, kidney). This differential expression is more accentuated in old mice, possibly pointing to the special relevance of these cytokines to organ homeostasis in old age. These findings may shed new light on the physiological functions of IL-1alpha and IL-1beta, and may also lead to the development of improved therapeutic approaches, based on the specific manipulation of these cytokines.  相似文献   
20.
A series of nine synthetic polyaromatic compounds were synthesized by polymerization of aromatic ring monomers with formaldehyde, which yield substantially ordered backbones with different functional anionic groups (hydroxyl and carboxyl) on the phenol ring. These compounds were tested for their heparin-mimicking activity: (1) inhibition of heparanase activity; (2) inhibition of SMC proliferation; and (3) release of bFGF from the ECM. We demonstrate that compounds that have two hydroxyl groups para and ortho to the carboxylic group and a carboxylic group at a distance of two carbons from the phenol ring inhibit heparanase activity and SMC proliferation, as well as induced an almost complete release of bFGF from ECM. Addition of a methyl group next to the carboxylic group led to a preferential inhibition of heparanase activity. Similar results were obtained with a compound that contains one hydroxyl group para to the carboxylic group and an ether group near the carboxylic group on the phenol ring. Preferential inhibition of SMC proliferation was best achieved when the position of the hydroxyl group is para and ortho to the carboxylic group and the carboxylic group is at a distance of one carbon from the phenol ring. On the other hand, for maximal release of bFGF from ECM, the position of the carboxylic group should be three carbons away from the phenol ring. These new heparin-mimicking compounds may have a potential use in inhibition of tumor metastasis, arteriosclerosis, and inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号