首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   560篇
  免费   60篇
  620篇
  2022年   6篇
  2021年   14篇
  2020年   9篇
  2019年   7篇
  2018年   5篇
  2017年   8篇
  2016年   13篇
  2015年   22篇
  2014年   23篇
  2013年   26篇
  2012年   43篇
  2011年   34篇
  2010年   21篇
  2009年   28篇
  2008年   25篇
  2007年   33篇
  2006年   24篇
  2005年   21篇
  2004年   18篇
  2003年   21篇
  2002年   16篇
  2001年   13篇
  2000年   13篇
  1999年   12篇
  1998年   8篇
  1997年   10篇
  1996年   7篇
  1994年   7篇
  1992年   9篇
  1991年   8篇
  1990年   11篇
  1989年   7篇
  1988年   4篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   6篇
  1983年   6篇
  1982年   3篇
  1981年   5篇
  1980年   6篇
  1979年   4篇
  1978年   3篇
  1977年   7篇
  1975年   3篇
  1970年   6篇
  1969年   3篇
  1967年   3篇
  1966年   3篇
  1950年   3篇
排序方式: 共有620条查询结果,搜索用时 15 毫秒
71.
ATP/ADP translocases are a hallmark of obligate intracellular pathogens related to chlamydiae and rickettsiae. These proteins catalyze the highly specific exchange of bacterial ADP against host ATP and thus allow bacteria to exploit their hosts' energy pool, a process also referred to as energy parasitism. The genome sequence of the obligate intracellular pathogen Lawsonia intracellularis (Deltaproteobacteria), responsible for one of the most economically important diseases in the swine industry worldwide, revealed the presence of a putative ATP/ADP translocase most similar to known ATP/ADP translocases of chlamydiae and rickettsiae (around 47% amino acid sequence identity). The gene coding for the putative ATP/ADP translocase of L. intracellularis (L. intracellularis nucleotide transporter 1 [NTT1(Li)]) was cloned and expressed in the heterologous host Escherichia coli. The transport properties of NTT1(Li) were determined by measuring the uptake of radioactively labeled substrates by E. coli. NTT1(Li) transported ATP in a counterexchange mode with ADP in a highly specific manner; the substrate affinities determined were 236.3 (+/- 36.5) microM for ATP and 275.2 (+/- 28.1) microM for ADP, identifying this protein as a functional ATP/ADP translocase. NTT1(Li) is the first ATP/ADP translocase from a bacterium not related to Chlamydiae or Rickettsiales, showing that energy parasitism by ATP/ADP translocases is more widespread than previously recognized. The occurrence of an ATP/ADP translocase in L. intracellularis is explained by a relatively recent horizontal gene transfer event with rickettsiae as donors.  相似文献   
72.
73.
Mouse embryonic stem cells (ES cells) can proliferate indefinitely. To identify potential signals involved in suppression of self-renewal, we previously screened a kinase/phosphatase expression library in ES cells, and observed that inhibition of Dual Leucine zipper-bearing Kinase (DLK) increased relative cell numbers. DLK protein was detected in both the pluripotent and differentiated states of mouse ES cells while DLK kinase activity increased upon differentiation. Overexpression of DLK in mouse ES cells displayed reductions in relative cell/colony numbers and Nanog expression, suggesting a suppressive role of DLK in self-renewal. By examining protein sequences of DLK, we identified 2 putative Akt phosphorylation sites at S584 and T659. Blocking PI3K/Akt signaling with LY-294002 enhanced DLK kinase activity dramatically. We found that Akt interacts with and phosphorylates DLK. Mutations of DLK amino acid residues at putative Akt phosphorylation sites (S584A, T659A, or S584A and T659A) diminished the level of DLK phosphorylation. While the mutated DLKs (S584A, T659A, or S584A and T659A) were expressed, a further reduction in cell/colony numbers and Nanog expression appeared in mouse ES cells. In addition, these mutant DLKs (S584A, T659A, or S584A and T659A) exhibited more robust kinase activity and cell death compared to wild type DLK or green fluorescence (GFP) controls. In summary, our results show that DLK functions to suppress self-renewal of mouse ES cells and is restrained by Akt phosphorylation.  相似文献   
74.
75.
76.
Simulation models of nutrient uptake of root systems starting with one-dimensional single root approaches up to complex three-dimensional models are increasingly used for examining the interacting of root distribution and nutrient uptake. However, their accuracy was seldom systematically tested. The objective of the study is to compare one-dimensional and two-dimensional modelling approaches and to test their applicability for simulation of nutrient uptake of heterogeneously distributed root systems giving particular attention to the impact of spatial resolution. Therefore, a field experiment was carried out with spring barley (Hordeum vulgare L. cv. Barke) in order to obtain data of in situ root distribution patterns as model input. Results indicate that a comparable coarse spatial resolution can be used with sufficient modelling results when a steady state approximation is applied to the sink cells of the two-dimensional model. Furthermore, the accuracy of the model was clearly improved compared to a simple zero sink approach assuming both near zero concentrations within the sink cell and a linear gradient between the sink cell and its adjacent neighbours. However, for modelling nitrate uptake of a heterogeneous root system a minimum number of grid cells is still necessary. The tested single root approach provided a computational efficient opportunity to simulate nitrate uptake of an irregular distributed root system. Nevertheless, two-dimensional models are better suited for a number of applications (e.g. surveys made on the impact of soil heterogeneity on plant nutrient uptake). Different settings for the suggested modelling techniques are discussed.  相似文献   
77.
78.
Shi X  Kohl A  Li P  Elliott RM 《Journal of virology》2007,81(18):10151-10160
The M RNA genome segment of Bunyamwera virus (BUNV), the prototype of the Bunyaviridae family, encodes a precursor polyprotein that is proteolytically cleaved to yield two structural proteins, Gn and Gc, and a nonstructural protein called NSm. Gn and Gc are type I integral transmembrane glycoproteins. The Gn protein contains a predicted cytoplasmic tail (CT) of 78 residues, and Gc has a shorter CT of 25 residues. Little is known about the role of the Gn and Gc CT domains in the virus replication cycle. We generated a series of mutant glycoprotein precursor constructs containing either deletions or alanine substitutions in the CT domains of Gn and Gc. We examined the effects of these mutations on glycoprotein maturation, cell surface expression, and low pH-induced syncytium formation. In addition, the effects of these mutations were also assessed using a reverse genetics-based virus assembly assay and a virus rescue system. Our results show that the CT domains of both Gn and Gc play crucial roles in BUNV-mediated membrane fusion, virus assembly, and morphogenesis.  相似文献   
79.
Elevated levels of the pro-inflammatory cytokine, interleukin-18 (IL-18) have recently been demonstrated in osteoarthritic cartilage. However, the effects of IL-18 on chondrocyte signalling and matrix biosynthesis are poorly understood. Therefore, the present study was undertaken to further characterize the impact of IL-18 on human articular chondrocyte in vitro. Human articular chondrocytes were stimulated with various concentrations of recombinant human IL-18 (1, 10, 100 ng/ml) for 0, 4, 8, 12, 24, 48, 72 h in vitro. The effects of IL-18 on the cartilage-specific matrix protein collagen type II, the cytoskeletal protein vinculin, the cell matrix signal transduction receptor beta-integrin, key signalling proteins of the MAPKinase pathway (such as SHC (Sarc Homology Collagen) and activated MAPKinase [ERK-1/-2]), the pro-inflammatory enzyme cyclo-oxygenase-2 (COX-2) and the apoptosis marker activated caspase-3 were evaluated by Western blot analysis and immunofluorescence labelling. Morphological features of IL-18 stimulated chondrocytes were estimated by transmission electron microscopy. IL-18 lead to inhibition of collagen type II-deposition, decreased beta-integrin receptor and vinculin synthesis, SHC and MAPKinase activation, increased COX-2 synthesis and activation of caspase-3 in chondrocytes in a time- and dose-dependent manner. Furthermore, chondrocytes treated with IL-18 exhibited typical morphological features of apoptosis as revealed by transmission electron microscopy. Taken together, the results of the present study underline key catabolic events mediated by IL-18 signalling in chondrocytes such as loss of cartilage-specific matrix and apoptosis. Inhibition of MAPKinase signalling is hypothesized to contribute to these features. Future therapeutics targeting IL-18 signalling pathways may be beneficial in rheumatoid arthritis and osteoarthritis therapy.  相似文献   
80.
Gene transfer into cultured chondrocytes by using adenoviral vectors has potential applications in treating cartilage disorders. The present study was undertaken to compare and optimize two chondrocyte culture conditions for adenoviral transduction efficacy by using primary human articular chondrocytes cultivated either directly in a monolayer condition or as outgrowths from alginate-stored chondrocyte cultures. Isolated primary chondrocytes from human articular cartilage were either immediately transduced with an EGFP (enhanced green fluorescent protein)-gene-bearing adenoviral vector (1,000 and 3,000 virus particles/cell) or cultured in alginate before transduction. Immunohistochemistry and flow cytometric analysis were employed to determine the expression of extracellular matrix proteins and of the αvβ5 integrin receptor involved in adenoviral cell entry. Monolayer chondrocytes exhibited moderate transduction rates (mean 22.2% and 46.9% EGFP-positive cells at 1,000 and 3,000 virus particles/cell by 72 h post-transduction), whereas alginate-derived chondrocytes revealed significantly higher transduction efficacies (95.7% and 99%). Both monolayer and alginate-derived chondrocytes expressed αvβ5 integrin, type II collagen and cartilage proteoglycans. The mean fluorescence intensity of type II collagen was significantly higher in the alginate-derived chondrocytes, whereas that of αvβ5 integrin was higher in the monolayer chondrocytes. Our results indicate that transduction efficacy is independent of αvβ5 integrin expression levels in chondrocytes. Moreover, adenoviral transduction of alginate-derived chondrocytes is more efficient than that for monolayer chondrocytes and may be a suitable tool to achieve sufficient numbers of transduced and differentiated chondrocytes for experimental applications and cartilage repair. Dr. Gundula Schulze-Tanzil is supported by a grant awarded by the Rahel Hirsh Foundation from the Charité Medical Schools Berlin. The study was supported by a grant from the Deutsche Arthrosehilfe e.V.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号